UNHIVERSITE

PARIS 12
VAL (=]
M ARRHNE

New implementation

of a parallel composition primitive

for a functionnal BSP language
Example to the implementation of algorithmic skeletons

llias Garnier & Frédéric Gava

September 2008
TR-LACL-2008-4

Laboratoire d’Algorithmique, Complexité et Logique (LACL)
University of Paris—East

Université Paris 12 — Val de Marne, Faculté des Science ¢intdagie
61, Avenue du Général de Gaulle,
94010 Créteil cedex, France
Tel.: (33)(1) 45 17 16 47, Fax: (33)(1) 45 17 66 01

New implementation

of a parallel composition primitive

for a functionnal BSP language

Example to the implementation of algorithmic skeletons

llias Garnier Frédéric Gava

Laboratory of Algorithmics, Complexity and Logic (LACL)
University of Paris—East (Paris 12),
61 avenue du Génétal de Gaulle, P2 du CMC
94010 Créteil cedex, France
gava@ni v- parisl2.fr

Abstract

Bulk-Synchronous Parallel ML (BSML) is a ML based languagecode Bulk-Synchronous Parallel (BSP)
algorithms. It allows an estimation of execution time, a@goileadlocks and non-determinism. BSML proposes an
extension of ML programming with parallel primitives on ar@lel data structure called parallel vector. One of
these primitives is dedicated to express at most divideeamdjuer algorithms by allowing parallel composition
of two BSP programs. Nevertheless, its implementationgusistem threads have a serious drawback which is
the maximal number of possible threads in OS. This papeeptes new implementation of this primitive (called
parallel superposition) based on a continuation-passiylg- (CPS) transformation and a flow analysis. Exemple
of application is done (with some benchmarks) to the apiitinaof the implemenatation of algorithmic skeletons
(those of OCamlIP3L) that will need an important number ofsoail this primitive.

gava@univ-paris12.fr

Contents

1 Introduction!

1.1 Generalities. o oo,
1.2 TheBSPmodel. e e
1.3 TheBSMLIlanguage. e e
1.3.1 COre BSP PHMItIVES. . . « o o o o oo e e e e
1.3.2 Useful BSP fUNCHONS. .« .« « o o o oo e e e e
1.4 Older implementation. oo

1.4.1 Super-threads and evaluation strategy
1.4.2 Thread implementationa o o v oo e
15 OUINE .+« o o oeove e e e e e e e

2 CPS transformation and flow analysis

2.1 Continuation Passing Style.
2.2 Monadic CPS transformation. e e e
2.3 Flow-directed cps transformation. e e
2.3.1 Type-based flow analysis.
2.3.2 Partial CPS transformation. e e
2.3.3 Soundness for the partial transformation. oo oo

3 New implementation
3.1 Imperative FBAIUIES. © « + v o e e e e
3.2 Themodule SYSIEM. . . . o o o o oo e
3.2.1 Defunctorisation. e
3.2.2 Themodule environment. e
3.3 Polymorphic type inferenCe. o o oo o
3.3.1 Type COoNStraints. e
3.3.2 Constraint generation. e e
3.3.3 Constraint solvin\g.
3.4 MONOMOIPNISAtION. . « . o o v o o e e
3.4.1 The instantiation graﬁ)h.
3.42 Code duplication. o
\3.5 Monoflowisatioﬁl. ...
3.6 Partial CPS transformation. o oo
3.7 Implementation details and iSSUES. s o e

4 Application to algorithmic skeletons

4.1 Algorithmic skeletons approéch
4.1.1 Definition, advantages and problems
4.1.2 Disadvantages and mixing skeletons with ad-hoclpésah
4.1.3 The P3LSetof Skeletons v oo o oo e e
4.2 The OCamIP3L SKEIBIONS . . o v v o e et e e e e e

\4.2.1 Th&seqskeletoh

QA g WNNN R P

~ Y

10
10
10
11

13
13
13
13
14
14
14
15
15
16
16
17
17
17

18

422 Thefarm SKEIBION . . . o o o o o e 22
4.2.3 Thepipeline SKEIBION .+ o v o o o 23
4.2.4 Thdoopskeleton e 23
425 Themap SKEIBION .+ . o o o o 24
4.2.6 Theeduceskeleton 0 i i e e 24
4.2.7 Theparfun andpardo SKEIBONS . .« o o o o o 25
4.2.8 Loadbalancing: the ColOrs v o o o e e 26
4.3 BSMLIMPIEMENAtON. . . « o o o o o 26
4.3.1 Execution of process netwdrks 26
4.3.2 Fromskeletonsto BSML codes i e e 27
4.3.3 Implementation (Ifec(f).\ 28
4.3.4 Implementation darm (N,S). oot 28
4.3.5 Implementation gipeline(sy,s2). 28
4.3.6 _Implementation dbop(f,s). o e 29
4.3.7 Implementation ahap(n,s). 29
4.4 Examplas ... 30
4.4.1 Code generation of a simple skeleton expression 30
4.4.2 APDE solver on multiple domainsot 30
\5 Conclusions 32
\5.1 Related Works. e e e e 32
5.1.1 Divide-and-conquer paradiganS. 32
\5.1.2 CPS transformations. e e e 32
\5.2 Conclusion. e 33
\A Longer BSML examples 36
A1 Sieve Of EratoSthenes o o v oo e e 36
A1.1 Logarithmic reduce method. e 36
A12 Direct Method. o o o, 36
A.1.3 Recursive method. e e 36
A.2 Parallel sortin\g ... 37
\B Proof of lemmas and theorem\s 39
C Coq script of ChapterE 43

Chapter 1

Introduction

The increasing pervasiveness of multi-CPU systems maleedebign of new and robust parallel programming
languages more important. Creating such a language irvvaltradeoff between the possibility to write predictable
and efficient programs and the abstraction of such featoreske programming safer and easier. An interesting
compromise is Bulk-Synchronous Parallel @/I(a.k.a. BSML), an extension of ML to code bulk-synchronous
algorithms which combines the high degree of abstractidvlofvith the scalable and predictable performances
of BSP. In BSML, deadlocks and non-determinism are avoided.

The Bulk-Synchronous ParaﬁeﬂBSP) paradigm’s simplicity and elegance comes at a costaltiiity to syn-
chronise a subset of the processors would break the BSP odsi nSubset synchronisation is used to recursively
decompose computations into independent tasks (this idiite-and-conquer paradigm). However, [36] pro-
poses a natural way to fit divide-and-conquer algorithms tiié BSP framework without using subset synchroni-
sation by using sequentially interleaved threads of BSPpetation, calledsuper-threads An adaptation of this
method to BSML was proposed in [29]: tharallel superposition The first implementation of this primitive was
based on system threads [19], limiting the number of sudatts and leading to efficiency problems.

We propose a nhew implementation of the parallel superpositDur implementation is based on the efficient
compilation of lightweight threads using a flow-directedSCP0] transformation. We base our developments
on a firm semantics ground, by proving the operational etprin® between the source and the result of the
transformation. Finally, we show how algorithmic skeletaan be implemented (even naively) using this new
primitive. This part briefly reviews the BSP model, the BSMinuage and informally presents the parallel
superposition and its first implementation.

1.1 Generalities.

At the core of our implementation is the CPS transformati@®S is a classic style of programming in which
control is passed explicitly in the form of a continuatior]. [Instead of “returning” values, a function takes an
extra argument, the continuation which represents whaildhme done with the result of the function and then
passes it to another function. For instance, the successotidn, written(fun x—x+1) in direct style, becomes
(fun x k—k(x+1)) in CPS style, wherd is the extra continuation parameter. Programs can be sgttaiy
translated to semantically equivalent programs in CPSyusivariety of CPS transformation algorithms [15]. The
CPS transformation is widely used as an intermediate reptason in compilers for functional languages [1],
allowing aggressive optimisations that are significantlyder to perform on direct-style programs. First-class
continuations are also an extremely powerful tool in thedsamf the programmer, allowing rich and expressive
control constructs to be built. In particular, cooperatightweight threads [17, 32, 38] are easily encoded using
continuations. We go further by guiding our transformatigra flow analysis, allowing to spare unrelated part of
the program from the transformation.

ICurrently, BSML is implemented as a parallel library @€ani . Sedéttp: //bsm i b.free. fr]
2\We refer to [6| 33] for a gentle introduction to BSP.

http://bsmllib.free.fr

Barrier of synchronization
P B B P P, I
Computations of the
[| first program
= T
- -
] 'W'»
74 — o
|71 AR
= L . LA
5 i 2
= o} AN Computations of th
- r%‘ b ,f R ompu dlonso e
oo second program
= ; TL —
== - N
+ S
e W N
o 1+1 _
2 L Communication
|7
E (-
= } g Mgy
ZI 1+ L

Without super-threads With super-threads

Figure 1.1: The BSP model of execution (left) and evaluatibthe superposition (right)

1.2 The BSP model.

A BSP machine is a set of pairs CPU-memory distributed acaassmmunication network. The execution of a
BSP program is divided into super-steps (see left schemiiflR), each separated by a global synchronisation.
A super-step consists of each processor doing some cadnidatin local data and communicating some data to
other processors. The collective barrier of synchrorosativent guarantee that all communications of data have
completed before the start of the next super-step; thisreagbie determinism of the parallel program.

A BSP computer is characterized by three parameters, whichigen in function of the processor speed

e The number of processops
e The time taken by a global synchronisatibn

e The time taken for a collective exchange where each procésssend and/or receive at most one word
g. This exchange is called a 1-relation. Thus, a communicgittase where each processor sends and/or
receivesh words is bounded b¥ x g.

Any BSP program’s complexity is given in function of thesegmaeters. If we were to allow subset synchro-
nisation, we wouldn't be able to bound the execution time stiper-step so easily. This would in turn make the
complexity analysis of BSP programs near impossible.

1.3 The BSML language.

1.3.1 Core BSP primitives.

BSML allows to program BSP algorithms in high-level fashi®@SML is based on 8 primitives, three of which

are used to access the parameters of the machine :

bsp_p:int bsp_I: float bsp_g: float

mkpar: (int—a)—a par

apply: (« —p3) par—a par— [par

put: (int—«) par—(int—a) par proj: a par—int—a«

super: (unit—a)—(unit—3)—a * 8

A BSML program is built as a sequential program on a paralieadtructure called parallel vector. Its ML
type isa par, which expresses that it contains a value of typat each of the processors. Moreover, there is
no nested data parallelism. To enforce this constraintpa system was develo;?edlmplementation of these
primitives rely either on MPI, PUB [7] or on the TCP/IP furartis provided by the Unix module @Cam .

The BSP asynchronous phase is programmed using the twdipestnkpar andapply so that(mkpar f)
stores(f i) on process (f is a sequential function): mkparf = [(fo) [--- [(fi)| --- [(F(p—1)) | andapply

3This is a part of the ongoing thesis of Louis Gesbert at the LA@ t p: / / r esear ch. anti sl ash. i nf o/ engl i sh/

http://research.antislash.info/english/

applies a parallel vector of functions to a parallel vectbaguments: apply [[fi][---][Ju] -]=
[Gw]]

The first communication primitive iput. It takes as argument a parallel vector of functions whiobush
return, when applied to, the value to be sent to processorput returns a parallel vector with the vector of
received values: at each processor these values are stoee€unction which takes as argument a processor
identifier and returns the value sent by this processor.

The second communication primitiyiroj is such thatproj vec) returns a functiorf where(f n) is the nth
value of the parallel vectorec. Without this primitive, the global control cannot takedretccount data computed
locally.

The primitivesuper (parallel superposition) allows the evaluation of two egsions as interleaved threads of
BSP computations called super-threads. From the prograspnt of view, the semantics sfuper is the same
as pairing but the evaluation stiper F; F is different (see right scheme in Fig. 1.1): the phases afaspnous
computation ofF;, and E, are run; then the communication phaseFsfis merged with that ofy; and only one
barrier occurs; if the evaluation @&, needs more super-steps than thatgtthen the evaluation af/; continues
(andvice versa.

The parallel superposition df’; and E5 costs less than the evaluation Bf followed by the evaluation of
E5. The superposition is thus not only useful to express digidé-conquer algorithms, but it can also be used to
efficiently program parallel data structures [20], BSP siciiag etc.

1.3.2 Useful BSP functions.

The primitives described in this section constitute theeaafrthe BSML language. The BSML library contains
many others useful functions.

Often used asynchronous functions. The asynchronous functiaeplicate creates a parellel vector which con-
tains the same value everywhere. Hpply primitive only handles the application of a parallel veatbfunctions
taking one argument, and we define #pplyn function to deal with n-ary functions.

(x replicate : o« — apar and apply2 : (o — [—) — apar — Bpar — ypar *)

let replicate x = mkpar(fun pid — x) and apply2 vf vl v2 = apply (apply vfvl) v2

It's also common to apply the same function to each elemeatpzfrallel vector. We provide such a primitive
for functions of arity equal to 1 and 2.

(x par fun : (o —) — apar and par fun2 : (a« — § —) — apar — [Bpar)

let parfun f v = apply (replicate f) v and let parfun2 f vl v2 = apply (parfun f v1) v2

We often want to apply a different function at a specific pescapplyat n f1 f2 applies function f1 at process
n and f2 at others.

(x applyat : int — (a — B) — (o — B) — apar — [%)

let applyat n f1 f2 v = apply (mkpar (fun i — if i = n then f1 else f2)) v

Often used communication functions. As an example, we will describe replicated total exchangechEpro-
cessor contains a value (represented as a parallel vectatufs) and the result ofl_total | vo [-~ [v,—1 |)

is [vo, . .., vp—1] - a replicated list of these values on each processor:
(x rpl_total : apar — alist *)

let rpl_total vec =
let rpl_totex vec = compose noSome (proj (parfun (fun v —Some v) vec)) in
List.map (rpl_totex vec) (procs ())

wherecompose f g x = f (g x), noSome (Some x) = x andprocs () = [0; 1;...; bsp_p() — 1].

Useful functions can then be defined, suclpagun_total which applies a sequential function to each element
of a vector, totally exchanges these values and finally epplnother sequential function:

parfun_total f; fo | vo |-+ [vp—1 |= (f2[f1v0; - -5 frop—1])-

Our second example is the broadcasting of a valrem one processarto other ones. It can be summarized
as follows:

0 1 p—1

where processar sends its own value to other processors. This task can be done in one super-sieg the
following code:

(* bcast_direct: int—a par—a par x)
let bcast_direct root v =
if not (correct_number_of_processor root)
then raise (Bcast_Error "Root_,is_not_a,_correct_number_of_processor")
else
let mkmsg = applyat root (fun v dst —=Some v) (fun _ dst —None) wv
in parfun noSome (apply (put mkmsg) (replicate root))

When the size of value to broadcast is important, and folgwihe parameters BSP of the machine, the two-phases
algorithm described in [6, 21] can be more effective.

The Figure 1.2 shows the method used. The broadcasting isuper-steps proceeds as follows: the sending
processor “cuts” the message ipteub-messages and sends one sub-message to each othesqueost super-
step). Then, each processor sends its sub-message tomatbesgors (total exchange) and to finish each processor
“glue” the receveid sub-message to form the complete messag

In a first step, we define the first super-step, one that ssdtterinitial value of the processor. We code it with
the function below, which takes as parameter a functiondbfihe how cutting the value to broadcast:

(x scatter :(« —int— /3 option)—int—a« par—g par x)
let scatter_wide partition root v =
if not (correct_number_of _processor root)
then raise (Scatter_Error "Root_is_not_a,_correct_number_of_processor")
else let mkmsg = applyat root partition (fun _ _ —None) in
parfun noSome (apply (put (mkmsg v)) (replicate root))

Then, we can implant a generic version of this broadcastomyithm, (generic because “cut” and “glue” functions
are the first function parameters):

let bcast_totex_rpl_gen howTotex howApp partition paste root vv =
if not (correct_number_of_processor root)
then raise (Bcast_Error "Root_,is_not_a_correct_number_of_processor")
else
let phasel = scatter_wide partition root vv in
let phase2 = howTotex phasel in
howApp paste phase2

(x replicate_bcast_totex_gen: (o« —int—/ option)—((int— (3)—~)—int—a par—~ *)
let replicate_bcast_totex_gen partition paste root v =
bcast_totex_rpl_gen proj (fun f x —(f X)) partition paste root vv

It can easily be specialized as for example lists (but wittetdf “cutting” and “glueing” lists that are proportional
to the length of the sending list) or with arrays (allowingcaitting” and a “glueing” proportional tp).
Longer examples of BSML code can be found in the Chapter Aeaihpendix.

1.4 Older implementation.

1.4.1 Super-threads and evaluation strategy

Imperative features are widely used when it comes to progwamerical codeOCani is a call-by-value language,
and in order to keep a deterministic semantics we must ctifige the order of evaluation in particular constructs.
This is the case of owsuper primitive, as shown in the following expression :

let a=ref O in let _ = super (fun () —a:=1) (fun () —a:=2) in la

Each process creates a replicate reference callethich contains the integdr. Then, two super-threads are
created, and each of them affects a different valuge tbno strategy is defined, the result would be indetermimist
The compositional nature of the BSP cost model would be foste number of super-steps of the program
depended o&. This is due to the fact that the two super-threads are aatideare allowed to modify this shared
reference.

Having only one active super-thread and a deterministiatesiy for the choice of this super-thread is the
solution : the active super-thread is evaluated until itsatalcomputation or it needs communications, i.e., until it
ends the first phase of a superstep. When communication®aeg the first super-thread which has finished “its
superstep” is re-started, i.e., it becomes the new curiviessuper-thread.

Note that having only one active super-thread gives alsteibperformances : there is no cost for changing
every time of active super-thread.

1.4.2 Thread implementationa

Currently, the superposition is implemented (based on as#&os study) using system threads [19]. Each time a
superposition is called, a new thread is created and sheke &ye used each time a communication primitive is
called. This way, we simulate that only one super-threadtiseaand allow that all data (managed by the GC of
OCaml) are available by each super-thread.

There are two drawbacks to this method. First, threads stamwndhe program: a global lock is used due to
OCanl 's GC. Even if there is at most one active thread, we lost adgi@ount of time because of the numerous
system locks. The second and main drawback is the maximabeuof possible threads in OS (e.g. 1024 for many
Linux systems). For divide-and-conquer algorithms (@itgoal of the superposition), it is not a problem because
they mainly need a tree of recursive calls (each call neeavasaper-thread) and their sizes are logarithmic in the
number of processors. But for a modern use of this primith& P0], a greater number of super-threads than this
maximal number can be run simultaneously in a single program

These limitations would quickly depreciate the interesthig primitive and using the semantics property that
only one super-thread is active, we now present anotheeimghtation which use a global continuation-passing-
style transformation of BSML programs.

1.5 Outline

Part/ 2 presents our transformation as well as semanticgest type system instrumented to perform flow
analysis is described.

Our implementation is described in Part 3. We used a constsalving approach to type inference. Moreover,
we describe the many transformations and optimisationd tesbridge the gap of polymorphism that we imple-
mented (such as monomorphisation), and their respectists emd benefits. We also dicuss the few technical
limitations of our code transformer.

In Part 4, we present an interesting example of applicatorodir new primitive: the implementation of algo-
rithmic skeletons. The skeletons are a kind of “paralleligiepatterns” which can be easily composed to form

safe parallel programs. These skeletons can be seen adaghagh we recursively decompose using the parallel
superposition.

Part' 5 concludes this report by reviewing previous works e implementation of the divide-and-conquer
paradigm into parallel programming languages and the ugedCPS transformation to express concurrency.

Chapter 2

CPS transformation and flow analysis

Before describing our transformation, we present a corecedanguage which is heavily inspired by ML, with the
adjunction of two concurrency primitivegield andsuper. We then proceed to the definition of the transformation
to the target language, which is the same as the source nhieaesnhcurrency primitives. Hergield replacegput
andproj, abstracting away communication handlingeld suspends the currently executing superthread (called
thread in the next) and schedules the execution of the nesddhas defined by thsper operational semantics.
As can be seen from the syntax definitiomkpar andapply are ignored. These two primitives are orthogonal to
the following work.

Syntax of the language Expressions and values are as follow:

en= variables | ¢ constants
| Az.e functional values | fix f Az.e recursive functions
| eren applications | letv = ejines local definitions
| (e1,e2) couples | ke constructor application
| matchewith m; | ...| m, patternmatching | ope;es arithmetic operators
| supere; es superposition | vyield simulatesgput andproj
mi= KT — e matching branch
vi= ¢ constants | v functional values
| fix fAz.e recursive functions | (vi,v2) couples
| kv constructor application

Annotations on expressions are possibly written in sub pesacript position. The big-step operational seman-
tics for the core of our language is given in Fig.|2.1.

2.1 Continuation Passing Style.

The original CPS transform [30] was designed to study thewuarevaluation strategies for the lambda-calculus
by making the control explicit, as eontinuation a function representing the evaluation context. It was the
discovered that giving to the programmer or the compiletexithe ability to explicitly manipulate continuations
was an expressive tool to perform various analysis or to@mearious high-level constructs, such as exceptions
or light-weight threads [32]. Below is the original CPS sformation, as defined in [30]:

[z] = M.kz
[Ae.M] = Xk.kE(A\x.[M])
[M NJ Ak M) (Am.[N]An.m n k)

This transformation is strictly equivalent to the monadiepwhich is presented in the next section.

2.2 Monadic CPS transformation.

Monads are a useful programming technique in functionajuages [37]. They allow to extend a language while
enforcing a correct operational behaviour. A monad is tha dathree primitivesrun , ret andbind, operating
on a typeM « - intuitively, the type of computations on values of typeTherun primitive has typeva.M a — «

PAIR

CONST L AMBDA G =1 €= v
c=c Az.e = A\z.e (e1,e2) = (v1,v2)
CONSTR LET APP

e = v e1 = U1 [v1/alea = w9 e1 = Ax.e o = v [v'/x]e = v
Ke = KU leta = e1ines = vg e1es = v

MATCH (0]

Fix e = KV [v/x]e’ = o e1 = U1 ey = Uy v = 0op v1 V2
fix h Az.e = fix h Az.e matchewith | ... |kz — €' |... = opejes = v
SUPER
61() = U1 62() = V2 YIELD

supere; e = (v1,v2) yield = ()

Figure 2.1: Big-step reduction rules

and executes a monadic programt , of type V a.ac — M o transforms a base value into a monadic one. Finally,
bind allows chaining monadic computations as reflected by ifgety o, 3.M o — (o — M) — M (3.

Monadic primitives. Threads are modelled as resumptions, meaning that thejtlaee i@ a suspended state or
terminateditype o thread=Terminated of « |Waiting of (unit—a thread).

The usual CPS monad type 1., « = Vf.(ae —) — 3 butin our case, the codomain of continuations is
always threadsM a = V 3.(a — thread () — thread 3. The primitives are defined as follow:

ret x = \k.kx
bind mf = Ae.m(\v. fok)
run = Az.((fix loop At. match ¢ with

| Terminated x — x
| Waiting s — loop (s())) (z (Ax.Terminated x)))

These primitives must also satisfy three laws:

bind (ret a) f
bind a Az.ret z
bind (bind a (Az.b)) (Ay.c)

fa
a

Qo

bind a (Az.bind b (Ay.c))

Wherex is defined asu; ~ as = VkJa.(a1 k = a) A (ag k = a) extended by “concurrency-irrelevance”:
Ak Waiting k ~ ret (). We take= to be g-convertibility. In our case, these laws were mechanicpiiyved
using the Coq proof assistant. See the appendix for the gavipft.

Monadic transformation. We now straightforwardly proceed to the definition of theveanonadic transforma-
tion on expression$;[e]:

To[z] = ret x
To[c] = ret ¢
To[Av.€] = ret \w.Ty[e]
To[fix f Ax.€] = ret (fix f A x.Ty[e])
TQ[[el egﬂ = bind TQ[[el]] ()\vl.bind TQ[[GQ]] ()\Ug.vl ?)2))
T(][“et’v = ¢1 1N €2ﬂ = bind T(][[el]] ()\U.T(] [[GQH)
Toﬂ(el,eg)ﬂ = bind TQ[[el]] ()\vl.bind TQ[[GQ]] ()\Ug.ret (1)1,1)2)))
To[r €] = bind Tyfe] (A\ve.ret s ve)
Ty[match e with
| ki zi — €] = bind Ty[e] (Ave.match v, with | k; z; — Tolei])
TO[[Op eq 62]] = bind TQ[[el]] ()\vl.bind TQ[[GQ]] ()\Ug.ret op V1 1)2))

The two concurrency primitives are then defined using fiesslcontinuations:

yield = Mc.Waiting k
super = letloop = fiXx loop A\rq.Ars.
bind yield (A () .match (r1, r2) with
| (Terminated xq1, Terminated x3) — ret (zl, z2)
| (T'erminated _, Waiting s) — loopry (s())
| (Waiting s, Terminated _) — loop (s ()) 2
| (Waiting s1, Waiting s2) — loop (s1()) (s2())) in
ret Afi.ret Afs.
letry = ((ret fi1)@(ret ())) (AxTerminated x) in
letro = ((ret fo)@(ret ())) (AxTerminated x) in
loop 11 o

Wherea @b = bind a (Av,.bind b (Avy.vg vp))).

The operational behaviour of these primitives is clgaeld captures it's own continuation, and stores it into
a suspension for further evaluatiosyper first suspends its own execution (usiyigld) and then schedules the
execution of it's two sub-threads, until they are termidate

Code size explosion. To illustrate the problem of the naive transformation, wedhis trivial but clear example:
apply = ANz fx
Tolapply] = Xko.koAf.Ak1.kiAx.(Aka.(Aks.ks f)(Av.(Avp. Akg.(Aks.ks) (Av.(Avg. v pvg)vks))vks))
It is obvious that this transformation can’t be used as isrédwer, this code didn’'t need to be converted to CPS
at all: it doesn’t contain any concurrency primitive. Pregey these kind of expression from being converted is
the aim of the transformation which is presented in the nesticn.

Soundness of the naive transformation. The soundness proof for the vanilla CPS transformation igkg
applicable to our slightly modified setting. We won't expdke proof here, but we will nevertheless state the
result. Let the CPS transformation on values be defined as:

[e], = ¢ [(v1,v2)]0 = ([v1]o, [vallw) [r v = & [0l
[Ax.e], = Ax.Ty[e] [fix h Az.e]), = fix h Az.Ty[e]
Theorem 2.2.1 (Soundness of the naive transformatiotf)e = v, Ty[e] ~ ret [v],.

The small-step semantics sfiper make the “threads” appear in the reduction sequence, thuseéhe big-
step semantics rules, making the proofs much harder. Howtlesfact thasuper allows to reduce the number of
global synchronisation only appears in the small-step stioga The proof linking our big-step soundness proof
to the small-step operational semanticsoper can be found in [18].

9

2.3 Flow-directed cps transformation.

The full transformation of a program to CPS considerablyedgs performance. This overhead is usually allevi-
ated using transformation-time reductions (so-callediatnative reductions) on the program.

However, these reductions doesn'’t suffice. Aiming at intgperallel computing, we can'’t afford to transform
unnecessary expressions. Observing how some very limidd pf the program need continuations, it seems
natural to try to convert only the required expressions (in @ase, onlyyield and super need them). We thus
need a partial CPS transformation. Ours is inspired by [ZHe expressions to be transformed are those sus-
ceptible to reduce gield or super expression. Since we must cope with higher-order functitves partial CPS
transformation is guided by a flow analysis.

2.3.1 Type-based flow analysis.

Definition of the type system. In the context of language compilation, flow analysis is lUgussed as a tech-
nique to efficiently implement closure conversion. Our flowalgsis presents itself as an instrumented type system,
yielding an straightforward flow inference algorithm.

Instead of tracking sets of lambda-abstractions, our floalyais purpose is to decide if an expression is sus-
ceptible to reduce gield expression. We define our flows as F 2=| Z. If an expression may reduceyéld,
we tag it agmpure Z. If not, we tag it agpure, noted”. We also define a total ordety on flows, defined by
I <r P.

Our type system is derived from the type system for CFA defind@3]. We use ground, simple types anno-
tated by flows. Let denote the syntactic family of types:

T = (F, const_type)
| (F,typename) user-defined sum types
| (F,19 — 1) functions
| (Fy70 % 71) couples
const_type == wunit | int constants

Each constructok. has a domain type (the type of its argument) and a codomain(thetypename to which
r belongs). These are denotegd,,, andx.q4om- We also define two projection functions on typesunot((f, x))
=z and flow(f,z)) = f. These functions are readily extended to typed source tdforsany expressions and
b, we definea V b = min(flow(a), flow(b)). The inference rules for our type system are given in/Fig. 2.2

Soundness proof. Before stating and proving the soundness theorem, we vallgoa lemma on type-preserving
(and thudlow preserving substitutions. This proof is mostly the same as in simppet lambda-calculus.

Lemma 2.3.1 (Typings are stable by substitution)
Lete be an expression such thBtx : 7 F e : 7/ holds, and lety be an expression such thit- v : 7. Then
I'Flv/xle : 7.

Theorem 2.3.2 (Soundness w.r.kield reductions)
Lete be a well-typed expression. We havejied expression is reduced while normaliziag— flowe = T.

Proof : see the appendix.

2.3.2 Partial CPS transformation.

In order to alleviate the overhead of the naive CPS, we usenadiected partial CPS transformation. The aim
is to preserve “pure” expressions, while CPS-convertimgplire” ones. The first option we considered was to
directly use the transformation describedin [27], relyimgthe types inferred during the flow analysis to generate
appropriate padding code between CPS and non-CPS ternlg, @adanalysis doesn’'t meet one of the criterion
necessary to ensure the soundness of this transformatitirenl appeared that our setting allows a much simpler
transformation. The algorithm is quite simple : when transfing a pure expression, we simply wrap it into a
ret .

10

Definition of the partial transformation.

T, [z] = ret z
T[] = ret c
T [Mv.e] = ret \v.Ti[€]

Ti[(fix h Ax.e)?] ret fix h Az.Ti[e]
T [[(61 62)I]] = bind T3 [[61]] ()\vl.bind Ty [[62]] ()\1)2.2}12}2))
Ti[(er e§)"] Ti[er](ret e2)
Tl[[(letv = 61 in 62)]] bind Tl[[el]] ()\U.Tl[[eg]])
(
(

Ti[(letv = el in e3)?] letv = ey in T1[es]

Tl[[€1, 62)]] = bind Tl[[el]] ()\vl.bind Tl[[ez]] ()\’Uz.ret (Ul,vg)))
T1[(k e)?] = bind Ti[e] (\ve.ret xwv.)
Ty [match e with

| ki x; — e] = bind Ti[e] (Ave.match v, with

| ki xi — Tiei])
T1[e7] = rete
The concurrency primitivesuper andyield are directly replaced by their definitions, and the pringitoperators
are always pure. We observe that an impure expression is reveedded into a pure one. This property is
induced by the type system: if any sub-expressipof an expressiom is impure, SO i%.

Examples. We will only show the produced code and not the type derimatiolrhe example from the previous
section is simply wrapped into an abstraction:

apply Afx.fo

T [apply] ret apply
We also give a more interesting variation of this functiore #¢sume here thitanda are always applied to pure
arguments, implying that flow{) = flow(x) = flow(f x) = P.

applyr = AfAzlet() = yield in fz
T1 [[apply]] =)\ko.ko)\f.)\kl.k:l)\x.)\kg.()\kg.Waiting kg)()\()()\())\k4k4(f 1‘)) () kz)

There is still many administrative redexes, but pure exgoes are preserved from being transformed. On large
real-world programs, most of the computation takes plaqaine expressions, making the CPS part less of a bur-
den. Our final touch to the transformation is the use of a meli@PS transform which creates no administrative

redex [14, 15].

2.3.3 Soundness for the partial transformation.

We redefine the partial CPS transformation on values as:
[v7]e =v [Oz.e)f], = Xz Tie] [(fix h Az.e)T], = fix h Az T} [e]
[(v1,02)*] = ([1llo, [vale) [(50)*]0 = & [v]

Once again, we will prove the soundnesgpon a subset of the source language. To this end, we need these t
lemmas:

Lemma 2.3.3 For all valuesv, T1[v] = ret [v],. Moreover,[v], is a value. (trivial proof)
Lemma 2.3.4 (Extended monadic substitutioRdr all valuesw,

1. Ifflow() = Z, Ty [[v/z]a] = [[v]./x]T1[a].

2. Ifflow(x) = P, Th [[v/z]a] = [v/z]|T}]a] (follows from the definition dff,).

We will now state the main soundness theorem.
Theorem 2.3.5 (Soundness of the partial CPS transformatidfy = v, 71 [t] ~ ret [v],.

Proof : see the appendix for the proofs.

11

z:7el

e:mbz:m if f=xVz I'te: kgom
T'Fx:71 'k c: (P, const_type) I'Fop: Ty L Ax.z: (f,71 — 72) T'F ke BEeodom
'z k27 ifannot(z)=1 — mandf=zVvz Tkz:m F'F2:m if f=2Vv7
T'F(22): {f, annot()) Tk (2,2): (f, 71 % 72)
I'kFz:m

Tox:m b2 im0 flow(n) <p flow(r)

Cyh:(f,mo—m),z:m0Fz2z:m
I'kFletz = zin 2/

if f=axVz
: Ty DFAfix hAz.z : (f,70 — 71)
' Fl—ezfsiodom F,xi:néom'l— €T
T, 2 Ko - K'ai s KD if flow(r) <p flow(k] 4,,) 1<j<mn,Viell.n]
I'Fmatchewith |k;x; — e :7

if f=min(flow(ry), flow(r))
I' k= super : (Z,(Z, (P, unit) — 7o) — (Z,(Z, (P, unit) — 1) — (f, 70 * 11)))

I'Fyield : (Z,unit)

Figure 2.2: Inference rules

12

Chapter 3

New implementation

Our source language is BSML, a statically-typed derivabiz€aml. Caml’s type system is based on the Hindley-
Milner type discipline, and provides a rich module systemejuding functors. We do not want to lose the flexi-
bility provided by polymorphism. But even if we could exteodr type system to handle let-polymorphism, we
would lose some precision (application of polymorphic timts to different types would be “merged”, and the
worst case would be taken). A polyvariant flow analysis cdgddused, but it would be extremely heavy, both in
algorithmic complexity and in implementation. Thus, we iniake on defunctorisation and monomorphisation.
Monomorphisation is the process of duplicating polymacghy typed functions for each needed domain type. It
can potentially make the size of the program grow exponignttzut actual implementations (as ML%hshows
that practically, the size growth is manageable (about 30IBdine, to maximize the efficiency of the generated
code, we use a process similar to monomorphisation call@abflowisationafter duplicating functions based on
their types, we duplicate them based on their flows.

3.1 Imperative features.

We didn't treat imperative features in this report, suffioesay that every expression involved in an effectful
operation is constrained to have a pure flow (our partial GR&formation isn’'t defined on imperative programs
yet). When encountering an impure loop, we must converttd its tail-recursive equivalent formOCani
handles tail-recursion fine, so there is no risk of stackftaxer(exceptocamlopt on some architectures, when the
number of arguments exceeds a certain threshold).

3.2 The module system.

3.2.1 Defunctorisation.

The source language provides parametric modularity (knesfonctorg, but our transformation doesn’t handle
theses properly. In order to apply our transformation, weeha defunctorise the whole program. To this end, we
use the already existingcamldefun prograrﬁ. A nice side-effect is the increased possibilities in imgqby our
back-end compiler@Cam).

We give a small example of the relevance of defunctorisatiasur setting. Imagining a similar example with
for instance a generic matrix module parametrized by a sepefators isn’'t hard.

module type DummySig =
sig
val please_inline_me : float —float —float
end

module Dummy : DummySig =
struct

*http://mton. org/
2http://www. I ri.fr/~signol es/ocan defun/

13

http://mlton.org/
http://www.lri.fr/~signoles/ocamldefun/

let please_inline_me = (+.)
end

module Functor (D : DummysSig) =
struct
let fold array =
Array.fold_left D.please_inline_me 0.0 array
end

(* Instantiate Functor with Dummy. Sadly,
x Dummy.please_inline_me isn’'t inlined. x)
module I1 = Functor(Dummy)

(* With defunctorisation, we would obtain: x)
module |12 =
struct
let fold array =
Array.fold_left Dummy.please_inline_me 0.0 array
end
(* This allows Dummy.please_inline_me to be inlined. x)

3.2.2 The module environment.

For clarity’s sake, we won't present too deeply how we hatlsddemodule system. Our implementation slightly
differs of OCanl ’s in subtle ways, and we dropped several features (sucheasdlude directive). Basically,
we see the module environment as a stack of currently openedles describing where wairrently are in the
module tree. We acknowledge that this part of our implenm@maneeds a more severe review to conform to
OCaml ’s semantics, however most programs are handled just fine.

3.3 Polymorphic type inference.

Monomorphisation operates on a typed source tree. To thisvem extended our type system to handle a caml-
like language. Instead of modifyingCamni 's type inference code, we chose to code from scratch a Foiai

type inference system, handling let-polymorphism. Drawimpon [31], we decided to use a constraint-based
inference algorithm. We use the (non-relaxed) value i&&iri to ensure the soundness of our analysis in presence
of references. Another gap to bridge is tireund nature of our original type system. Thus, the syntactic liami

of typesr is extended with typ&ariables notedw.

3.3.1 Type constraints.

As in [31], polymorphism is handled using constrained typeesnes, whose meaning is roughly the set of all
ground types admitted by the underlying expression. Caim&rC' and type schemeg are defined as follow:
C:= True “empty” constraint

| CoNCy constraint conjunction
| 70=7 equality constraint
| Jv.C existential quantification of types
| Jrvs.C existential quantification of flows
| defx : xinC binds atype scheme to
| instxx instantiates the scheme boundto
| 70<rm flow constraint
Xu= T ground types

| Vo[C].v constrained type scheme

Bear in mind that the types’s shapes are irrelevant tatheonstraint.

14

Cyl].. = instxT

Cylil . = 7 = (P,int)
CqlO1, = 7 = (P,unit)
CylMv.e] = 3Xo X1.3pfdefv @ Xoin Cyle]x, A 7= (f, Xo — X1)
AN f<p flow(Xo) N f<p flow(X;)
Cy[fix h Az.e] = IXoXidpfdefh : (f,Xo— Xi)indefx : Xgin Cyle]
AT =(fXo— X1) N f<p flow(Xo) N f<p flow(Xy)
Cg[[el GQHT = dXp Xl'HFf'Cgﬂel]}(f,XoﬁXl) A Cg[[eg]]Xo AN T1T=2X;
ANf<p flOU)(Xo) AN f<p flow(Xl)
Cylletv = egines] = defv : VX[Cyler] v N flow(r) <p flow(X)].X in Cylea]
Cg[[(el,eg)ﬂT = dXp Xl.ﬂpf.cg[[elﬂXo A Cg[[eg]]xl N T= <f,X0 *X1>
A f<p flow(Xo) N f<p flow(X7)

Cylr €] . = 3X3pf.Cyle]y N (7= (f dataconsk X)) A f<p flow(X)
Cy[match e with x; 2; — ¢;] = HXO.CQ[[eﬂXO A FYidef z; : Yiin N (Cylk; xiﬂxo A Cyles].)
A flow(T) <p flow(Xp)

Cyloper ea] = Cg[[elﬂ(P,mt> A Cgﬂe?ﬂ(?,mt) A 7= {(P,int — (P,int — int))

Cg[[superel QQHT = dXy X1 X XT'CQ[[el]]Xl N Cg[[egﬂxr AN X = <I, (P,unit> — X0>

ANX, = <I, <73,um't> — X1> N T= <I,Xl — <I,Xr — <’P,X0 >I<X1>>>
A flow(Xo) =Z A flow(X1) =1

Cylyield] = 1= (Z,unit)
Figure 3.1: Constraint generation

3.3.2 Constraint generation.

The constraint generation algorith@, is defined inductively on expressions and is a quite naturebding of
the typing rules into the constraint language. This is n@ssE since our type system is syntax-directed. It is
also parametrized by the expected type of the expressiararale seen from the definition 6f, in Fig.[3.1. In
order to simplify the presentation, we assume the existeheadataconsfunction which upon application to a
data constructok and a domain type returns the type of the constructed value.

3.3.3 Constraint solving.

For any programP, the computed type constraint@s= 3X.C,[P] . C is then simplified into a list of type
equations. This list is the unification problem we feed to soiver, which proceeds using a slightly adapted
syntactic unification module, on top of an union-find aldarit The flow equations are stored, as they can'’t be
solved without the full types’s shapes.

15

Cs[True] = 0

CS[[CO A Clﬂl‘ = CS[[C()]]F U Cs[[clﬂ[‘

Cs[ro = m]p = {n =mn}

Cs[3v.C)p = C;[C]pwhereuv is fresh

Cs[Frvy.Cly = C;[C]pwherevy is fresh

Csldef z : xinC]p = if xisaground typeCS[[C]}(xHX):F
if x is aschem&[C], . .1

Csllinst z 7] = if I'(z) isaground type{Il'(z) = 7}

if I'(z) is is a schemél”, Vv[C].v), Cs[3v.C Av = 7]
Figure 3.2: Constraint solving

The constraint solving algorithm is parametrized by an emmentI’ from program variables to enriched
constrained type schemes. When instantiating constrairgsmust ensure that they are solved in their original
environment, not the environment at instantiation poirgnée we enrich the type schemes with an environment,
denoted by(T', V v[C].v). The constraint solving algorithifi; is defined in Fig. 3.2.

The unification module must solve the equations for the glpgegas in any standard type inference system)
but also for theflowscontained in them. The method employed is simple: when ingftwo terms, we compute
the new flow as the minimum of the flows of the two terms beindiethi The<p equations are accumulated
during the solving phase and solved apart. There are many @fegchieving this, but we use an union-find tree
parametrized with ad-hoc operations (merging two desmnsps defined as taking the minimum of two flows).

3.4 Monomorphisation.

The partial CPS transformation needs simple types. Thusijegd to monomorphise the whole program. After
type inference, the syntax tree is annotated with eithenrgtdypes or type schemes, which are introduced only
atlet bindings. Each of these bindings is possibly instantiatéd different types. Monomorphisation is the act
of duplicating these bindings for each instantiation type.

3.4.1 The instantiation graph.

In the following, we assume that each expressias annotated with an unique integeriiddenotede;. We also
assume that type schemesare annotated with the uniqueiadf the expression binding them. Finally, we ignore
particular cases induced by the value restriction withoss lof generality.

Any polymorphically typed function can in turn instantiaey previously defined polymorphic functions (ex-
cept itself). Thus, the instantiation type of a functionl cahy depend on the instantiation type of the enclosing
function. This describes an instantiation graph. The mask ©f monomorphisation is to compute this graph,
which is then easily used to specialize functions when tlemdrto be. We define @ntextc to be either empty
or equal to a coupléi,) formed by a polymorphic function and an instantiation tywhere: is the unique id of
the let-binding. The instantiation graghis a mapping from non-empty contexts to instantiation tyjedgexed
by program points G (ig, 7) 41 is the type of the program poinf when the function is instantiated by-. In
order to comput& we parametrize&’; by a context, and the resolution rule forst is modified as follow :

Cslinst x; 7]f = if I'(x); is a ground type,
If c=0,add(j,7)t0 G
If ¢ = (ic, 7c), add a mapping fromto 7 indexed byi in G
{T(x) = 7}
if I'(x) is is a schemégl”, (Vv[C].v);),
If c=0,add(j,7)t0 G
If ¢ = (i, 7.), add a mapping fromto 7 indexed byi in G
Cs[Fv.CAv = T]](Fj,’T)

Initially, the context parameter is empty.

16

3.4.2 Code duplication.

Since we are typing the whole program, we know exactly eastamtiation type for each binding, allowing us
to create as many ground versionsao@s we need. In order to avoid variable capture problem, we eath
specialized code to a fresh name, and update the instantiptiints accordingly. The freshness is ensured by
performing an alpha-conversion pass on the whole prograen gjpe inference and before monomorphisation.
The instantiation graph stays valid, since we rely on unigise The duplication algorithm is simple : when
encountering a let bindinptv; = ein ... we instantiate the code for each nader) in G. Thee expression
must also be recursively monomorphised, each ppinte beeing instantiated with the tyge(i, 7) j.

Monomorphisation can make the code exponentially biggértHis worst case is very unlikely in real-world,
numerical code. On the other hand, we can then safely remmowe the program any binding whose type still
contains variables. Even more importantly, constrainiaghetype to be ground allowdCam to use efficient
unboxed data representations wherever possible (e.gsaf#loats). In our case, performing monomorphisation
is a clear advantage from any standpoint.

3.5 Monoflowisation.

A step in the compilation process is what we call “monoflot@®. This process is similar to monomorphisa-
tion, but instead of duplicating functions based on types,duplicate them based on flows. This is of utmost
importance for widely used functionals: if these functiamns used with an impure argument throughout the code,
they are flagged as impure feverycall site (even with pure arguments). This is a consequehoardlow anal-
ysis being monovariant. A solution would be to take the flomts iaccount when doing the monomorphisation.
Polymorphically-typed functions would then have a polyaatr behavior. From an implementer standpoint, it
means that the instantiation graph should be able to disghgnstances based on their flows. Another approach
would be to directly use a polyvariant flow, but it would haweh far more difficult to prove and to implement.

3.6 Partial CPS transformation.

Once the program is transformed into simply-typed form, @ apply the partial CPS transformation, as defined
earlier. But the standard CPS transformation is known t@gga may administrative redexes, which may greatly
hamper the performance of the resulting program. To avadhthwe use the optimizing transformation defined
in [15]. The transformation uses a “smart application” ¢amgor @ which reduces on the fly administrative
redexesz.b Qg c = [c/x]b.

Tolz] > k = kQguz
Tolc] > k kQgc
Tl(Az.e)*] >k kQg Az kTo]e] > k)

To[(fix h Az.e)f] > k = kQg (fix h Az k. To[e] > k)
T2[[(61 eg)zﬂ >k = 1T [[61]] >)\Ul.TQ[[SQ]] > A\vo.v1 U2 k
T2[[(61 6;))1—]] >k = 1Ty [[61]] > A\vp.vp es k
Thl(letv = efine)f >k = Taer] > M. Tefez] >k
Trl(letv = el inex)f] >k = letv = ey in Tafes] >k
TQ[[(el, 62)1]] >k = Tg[[elﬂ >)\Ul.TQ[[@Q]] > \vg.k @@ (Ul, Ug)
l(ke)f] >k = Dhle] > kQgrv
Ty [match e with
| kizi — e | >k = Thfe] > (Av.match v with

| Ri Ty — TQ[[ei]] > k)
Tale”] > k = ke

This transformation generates no administrative redeixhas the flaw that we lose our semantic preservation
theorem.

17

3.7 Implementation details and issues.

Our implementation language is the same as the target lgagu@Camni . The code itself is written in a purely
functional style (the only exception being a unique id gat@rwhile creating the abstract syntax tree), allowing
an “easier” job for future certified developments with e.@qC

The most problematic part of the source language was catstbinding multiple variables at once, such as
patterns. The constraint generation of these is quite ieeblas is the monomorphisation of such bindings. We
think that our whole code base’s size could be reduced byaat B0% if the source language were to have only
one-variable bindings. Transforming the whole input cazlan equivalent form with simple bindings could be
worth considering, as it would also lower the gap betweenfaumal developments and the language - but the
added let-bindings could introduce the allocation of neluesand a performance loss.

Also, mutually-recursive bindings are convertible intofrrautually recursive bindings by a simple transforma-
tion that we still haven't implemented. The constraint gatien for this kind of bindings would be a lot simpler
if mutual recursion were to be hoisted. For the time beeirgghaven't defined monomorphisation for these.

18

Chapter 4

Application to algorithmic skeletons

Algorithmic skeletons languages are generally defined tigdinicing a limited set of parallel patterns (also called
operators or combinators) to be composed in order to buildligpérallel application. In general, in skeleton
languages, the only admitted parallelims is usually thakefetons, in order to keep low the complexity of finding
an efficient implementation. The expressiveness of thetMelpproach is achieved using as based skeletons a set
of well-known and usefull parallel paradigm (farm, pipeyide-and-conqueetc).

We here present a naive implementation of the OCamIP3L tskeldanguage (P3L's set of skeletons for
OCaml), based on our parallel superposition primitive.

4.1 Algorithmic skeletons approach

It observes that many parallel algorithms can be charaei@ind classified by their adherence to one or more of
a number of generic patterns of computation and interactimr example, many diverse applications share the
underlying control and data flow of the pipeline paradigm [8]

Skeletal programming proposes that such patterns be etestrand provided as a programmer’s toolkit, with
specifications which transcend architectural variatiangraplementations which recognise these to enhance per-
formance. The core principle of skeletal programming iscemtually straightforward. Its simplicity is a strength.

4.1.1 Definition, advantages and problems

The idea behind a strict skeletal approach is that suchigiéstr of programs parallel structure does not affect
the expressiveness of the methodology more than elimiagtito affected sequential imperative programming.
On the contrary, skeletons programming helps in a makingllghisoftware simple and easy to maintain since
low-level details do not appear in the programs anymore.

Algorithmic skeletons are thus high-level primitives (atslled “parallel patterngb designed to be safely com-
posabl@. Efficiency is usually easier to achieve since programs eacompiled by composing already optimised
implementations. Skeletons languages are usually repeg@is a portable programming approach since they do
not assume any particular features of the target machine.

Performance and easer programming have been the two maonset introduce skeletons, since the problem
of exploiting the computational resources for parallel potng is harder than in the sequential case. A higher
number of decisions should be taken when implementing Iphisdfwares and so support is needed to make
clever choices (e.g. mapping processes onto processopdintise a given communication pattern is known to be
in general a NP-hard problem and thus could be not not a futldrudecision procedure). The idea is that limiting
the structure of the problem we also diminish the complesdtihe implementation choices.

In this way, it promises to address many of the traditiorelés within the parallel software engineering process:

e it will simplifyprogramming by raising the level of abstraction;

A generic definition of a pattern : it is the abstraction frowpacrete form which keeps recurring in specific non-arbjtcntexts.
2Definition of Murray Cole isEach skeleton captures the essential structure of somépkat problem solving style or technique.

19

e it will enhanceportability andre-useby absolving the programmer of responsibility for detaitedlisation
of the underlying patterns;

e it will improve performanceby providing access to carefully optimised, architectyrecific implementa-
tions of the patterns;

e it will offer scope for static and dynamigptimisation by explicitly documenting information on algorith-
mic structure (e.g. sharing and dependencies) which wditdeh de impossible to extract from equivalent
unstructured programs.

Yet skeletal programming has still to make a substantiabichpn mainstream practice in parallel applications
programming. In contrast, MPI was designed to addressainsisues (to varying degrees) and has proved very
popula@.

While initially targeting issues of synchronisation anahdeterminism more relevant to distributed computing,
recent work has moved closer to the concerndliglh Performance ComputingHPC) and the connection to
skeletons has become increasingly apparent.

4.1.2 Disadvantages and mixing skeletons with ad-hoc patalism

Despite all the advantages of the skeleton approach, thesecee some non-minor drawbacks. A well know dis-
advantage of skeleton language is the problem of efficiehepme combination of skeletons on certain archiec-
tures. Finding the minimal set of skeletons (and have effi@éad portable implementations) is still an open field
of research.

Also, skeleton and pattern based parallel programming @@msignificant benefits but remain absent from
mainstream practice because many parallel applicatiansi@robviously expressible as instances of skeletons.
Some have phases which require the use of less structuezddtibn primitives. Other applications have concep-
tually layered parallelism, in which skeletal behaviouoag layer controls the invocation of operations involving
ad-hoc parallelism within. It is unrealistic to assume #iadletons can provide all the parallelism we need. Skele-
tons’s languages must be constructed in the way to allowrttegyiation of skeletal and ad-hoc parallelism in a
welldefined way.

For exampleMPI_Broadcast, MPI_Reduce and MPI’s other collective operations are useful tools. eesv,
the experienced parallel programmer is aware that therethee “patterns of computation and interaction” which
occur in a range of applications but which are not caterediifectly. For example, pipelines and task farms are
well-established concepts, helpful during program desigt must be implemented directly in terms of MPI's
simpler operations. The goal of the a skeleton library forl i4Ro add such higher level collective operations to
the MPI programmer’s toolbox.

Despite parallel programming, using just skeleton to hamalfel programs from sequential ones is quite rea-
sonable when the goal is to build a stream processing netshasgribed by the skeletons. However, it has several
drawbacks in the general case:

e breaks uniformity Though the skeletons look like ordinary functions, theyaotially in different classes
and can never been uniformly mixed together; hence, thergnogers have to program in a style that
strictly conforms with a two-level style, especially, innggal, the skeletons cannot be invoked as ordinary
functions from sequential code, even if they could have @misite types.

e may produce contrived programst Many applications boil down to simple nested loops, some itk
can be easily parallelized, and some cannot; in some calsesiumerical algorithms, what the user was
really asking for, is the possibility of just parallelizirgparticular very heavy computation deep inside the
sequential code, while pure skeletons language enforeedgér to rewrite all the program logic in a very
unnatural way with some control parallel skeletons;

e prevents sharingln various numerical algorithms, some operation, like iplying some vectow by the
very same large matrid, may be performed at different places of the sequentialrigigo, and the user

3Noting the increasing stability and portability of direcrpllel programming frameworks (and in particular MPI).

20

naturally wants to a way to assure that this computation bfmeed by the same processing resources
(sharing the large matrix A). Most of pure skeleton langsad@es not allow the user to specify this sharing.

In this way, having skeleton in BSML would have the advantafjthe BSP pattern of communications (col-
lective ones) and the expressivity of the skeleton approkekn, if the implementation is less efficient compare
to a dedicated skeletons language (or MPI send/receiveléingmtation), programmer could compose skeleton
when it is natural for him and used a BSP programming stylenwhis necessary. Note that, for the sequential
parts (which cannot be parallelized) of a programs, BSMId (e BSP model) forces them to be replicated or
in a specific processors but, in all the cases, as efficiemt agpure sequential implementation. This is the main
advantage to have both BSP and skeletons paragdim in one shot

For our purpose and to also have interesting benchmarksakes for example the implemenation of the
OCamlP3L skeletons language (P3L’s set of skeleton©@ami).

4.1.3 The P3L set of skeletons

Our work is about the P3L (“Pisa Parallel Programming Lawggipnset of skeletons. P3L provides three kinds
of skeletons: task parallel skeletons, data parallel sheteand control skeletons. Each skeleton is a stream
processor, i.e. a function which transforms an input stredimcoming data into an output stream of outgoing
data. Skeletons can be composed to define the parallel loeludyrograms.

Task parallel skeletons model the parallelism of indepehgeocessing activities related to different input
data. They transform a stream of independent input dataailstoeam of results. Data parallel skeletons exploit
parallelism in the computation of different parts of the sanput data. Control skeletons are combinators which
do not express parallelisper se but orchestrate the interaction and control flow amongél@ential and parallel
parts of an application. The core P3L skeletons are:

e Task parallelism:

— pipeA stream of tasks (the type of the stream is defined in the iligiyflows along the stages, hence
the input list of the stageé and the output list of the stage— 1 should coincide; The pipe exploits
parallelism in the execution of a sequence of skeletonsidgfindependent stages of a computation.

— farm The computation on different input data items is executepkirallel over a set of worker; The
stream of tasks with type defined in the inpuit list are distiéd among the worker with some kind
of load balancing strategies; The farm replicates a skelgttm a pool of identical copies (the farm
workers) each one computing independent data items in put giream.

e Data parallelism:
— map modeling a data parallelism; a set of input structures igidiged according to a user-defined
strategy and then the function is executed in parallel osst @f worker
— reducemodeling binary tree computations of an associative opemat an dimensional input param-
eter giving a(n — 1)-th dimensional output parameter;
e Control parallelism:
— loop modeling iterative computations; the execution of a funtis repeated until a termination con-
dition is true; at each iteration the argument of feedbadobrees another input for the skeleton,
— segmodelling the inclusion of a sequential code, written in seguential host language; this code
must have no side-effect

The possibility of nesting skeletons is the most relevaatiee of such a language. The P3L set of skeletons has
been added to many imperative language as C++ or Java. OGhaislBn extention oOCanl with an adapation
of the P3L skeletons for functionnal programming. This detkeletons would be our case study.

21

val seq : (unit —a —3) —unit —a stream — 3 stream

val parfun : (unit —unit —« stream — g3 stream) —« stream — 3 stream

val pardo : (unit —a) —a«

val loop : (¢ —bool) * (unit —« stream —q« stream) —unit —« stream —a stream

val farm : (unit — (3 stream —~ stream) * int —unit —3 stream —y stream

val (]|) : (unit —« stream — stream) —(unit — /3 stream —-y stream) —unit —« stream —-y stream
val mapvector : (unit —3 stream —~y stream) x int —unit — 3 array stream —-~ array stream

val reducevector : (unit —(38 * @) stream — (3 stream) = int —unit — 3 array stream —/ stream

Figure 4.1: The (complete) types of the OCamlIP3L skeletonbinators

4.2 The OCamlP3L Skeletons

OcamlP3L imported the skeletal model proposed by P3L withesminor changes due to the functional nature
of the OCaml. The OCamIP3L system is a programming environriat provides a skeletal model for OCaml
and at the same time provides seamless integration of glapgigramming and functional programming with
advanced features like sequential logical debuggingf(irectional debugging of a parallel prograna execution
of all parallel code onto a sequential machine) and stropongy useful both as a testbed for innovative parallel
programming style and a practical tool in building full-Ecapplications for scientific computation.

Figure 4.1 resumes the ML type of the OCamlIP3L skeletonst bethe text comes from the usual manual of
OCamlP3L.

4.2.1 The seq skeleton

Thesegskeleton encapsulates @anm function f into a stream process which appligto all the inputs received
on the input stream and sends off the results on the outmaetrAnyOCam function with type(unit—a —3)
can be encapsulated in tseqskeletons as followsseq f. The central point is that the function must be unary,
i.e. functions working on more that one argument must cbtleem in a single tuple before being used isesy

4.2.2 The farm skeleton

Thefarm skeleton computes in parallel a functigrover different data items appearing in its input streamniro
a functional viewpoint, given a stream of data items. .., z, and a functionf, the expressiofarm (f, k)
computesf(x1), ..., f(z,). Parallelism is gained by havirigindependent processes that compfiten different
items of the input stream. If has type(unit— (3 stream—-~ stream), andk has typeint, thenfarm (f, k) has
type unit— g stream—-~ stream. In terms of (parallel) processes, a sequence of data dapgeamto the input
stream of a farm is submitted to a set of worker processesh ®atker applies the same functiofi, (which can
be in turn difined using parallel skeletons) to the data itezusived and delivers the result onto the output stream.
The resulting process network looks like these of Figurevh@re the emitter process takes care of task-to-worker
scheduling (possibly taking into account some load bafanstrategy).

Thef ar mfunction takes two parameters:

e the first denoting the skeleton expression representinéatheworker computation,

e the second denoting the parallelism degree the user deftdéte farm, i.e. the number of worker processes
that have to be set up in the farm implementation.

22

Travailleur
4
4

,
Entree donnees - Sortie des donnees
—_— /’ —
/

i

/ N
Emetteur Rassembleur

Figure 4.2: The process network ofaam skeleton

4.2.3 The pipeline skeleton

The pipeline skeleton is denoted by the infix operator ggrtorms in parallel the computations relative to différen
stages of a function composition over different data itefrth@input stream.

Functionally, f1 ||| f2 - .. ||| f» computesf, (... fo(f1(z;))...) over all the data items; in the input stream.
Parallelism is now gained by havingindependent parallel processes. Each process computastafuf; over
the data items produced by the process computirgl and delivers its results to the process compufing 1. If
/1 has typgunit—a stream— (3 stream), and f» has type(unit— g stream—-~ stream), then f7 ||| f2 has type
unit—a stream—-y stream.

In terms of (parallel) processes, a sequence of data apgeanto the input stream of a pipe is submitted to
the first pipeline stage. This stage computes the functjoonto every data item appearing onto the input stream.
Each output data item computed by the stage is submitteceteabond stage, computing the functinand so
on and so on until the output of the— 1 stage is submitted to the last stage. Eventually, the lagesielivers its
own output onto the pipeline output channel. The resultimg@ss network looks like these of Figure|4.3.

f1 f2 fm

Entree . . . Sortie

7 7 7
, ,

stage1 sta§e2 stagém

Figure 4.3: The process network opgoe skeleton

4.2.4 The loop skeleton

Theloop skeleton computes a functigiover all the elements of its input stream until a boolean @@dy is veri-
fied. Aloop has typéa —bool) * (unit —« stream —« stream) provided thatf has typaunit—a stream—a stream
andg has typex —bool.

In terms of (parallel) processes, a sequence of data apgeanito the input stream of a loop is submitted
to aloop in stage. This stage just merges data coming from the inputneéhamd from the feedback channel
and delivers them to thimop bodystage. The loop body stage compugeand delivers results to tHeop end
stage. This latter stage computgand either deliversf{ z onto the output channel (in case (f x)) turns out
to bet r ue) or it delivers the value to the loop in process along thelieeld channel(g(fx)) =f al se). The
resulting process network looks like these of Figure 4.4.

23

loopin _ . - loop out

Input data) i . . Output data
! f E

Figure 4.4: The process network ofamp skeleton

4.2.5 The map skeleton

The map skeleton is nameadapvector, it computes in parallel a function over all the data itemsaofector,
generating the (new) vector of the results.
Therefore, for each vectoX in the input data streanmapvector (f,n) computes the functiorf over all the
items ofX = [z4,...,z,], usingn distinct processes that compute f over distinct vectorstéif(1), . . ., f(z,)]).
If fhas typgunit—a stream—/ stream), andn has typent, thenmapvector (f, n) has typeunit—a array stream—/
In terms of (parallel) processes, a vector appearing organibut stream of anapvector is split n elements
and each element is computed by one ofitheorkers. Workers apply to the elements they receive. A collector
process is in charge of gluing together all the results imglsiresult vector (see Figure 4.5).

Worker
4
4

i

A
Input data - Output data
@ P

/

Emitter Collector

Figure 4.5: The process network ofreap skeleton

Different strategies can be used to distribute a vegtar. - - - ; x,,|] appearing in the input data stream to the
workers. As an example the emitter:

e may round robin each; to the workers«, - - - , w,). The workers in this case simply compute the function
f o —[over all the elements appearing onto their input streamnfodiq

e may split the input data vector in exactly sub-vectors to be delivered one to each one of the worker
processes. The workers in this case computégay.map f over all the elements appearing onto their
input stream (channel).

Summarizing, the emitter process takes care of (sub)taskotker scheduling (possibly implementing some
kind of load balancing policy), while the collector procéskes care of rebuilding the vector with the output data
items and of delivering the new vector onto the output datast.mapvector takes two arguments:

e the skeleton expression denoting the function to be appiied the vector elements, and

e the parallelism degree of the skeleton, i.e. the numberafgeses to be used in the implementation.

4.2.6 The reduce skeleton

The reduce skeleton is namestiucevector, it folds a function over all the data items of a vector.
Therefore reducevector (&, n) computesr; ® z2 @ ... ® z,, out of the vector, ..., z,, for each vector in
the input data stream. The computation is performed usididferent parallel processes that compyite

24

If ® has typgunit—a *x«a stream—a« stream), andn has typent, thenreducevector(®, n) has typaunit—a array strea
In terms of (parallel) processes, a vector appearing omanhut stream of a reducevector is processed by a
logical tree of processes. Each process is able to compeiteitiary operator. The resulting process network
looks like the tree of Figure 4.6.

Worker processes
e TN
PIAVARN
e oo
L RN
N
h\\ ‘ /// \\ B
\ , \
¢ 4 \/ RN
Input data \ / ! e \ N
\ // // N
; , N
o
/
/ \ Output data
- =

\
AN
N

\
A AR
: g\‘:’*—fL_>

s TSt T

\ RSN T
\ RN
' ~o
\ / A
"o AN
y
v 7

/\ _—

Emitter

Figure 4.6: The process network ofeduce skeleton

In this case, the emitter process is the one delivering reitbeples of input vector data items or couples of
sub-vectors of the input vector to the processes belongiribet tree base. In the former caseg(n) levels of
processes are needed in the tree, in the latter one, any naipmcess levels can be used, and the number of
sub-vectors to be produced by the emitter can be devise@quoastly.

Thereducevectorfunction takes two parameters as usual:

e the first parameter is the skeleton expression denotingittayh associative and commutative operation
(these properties must be ensured by the programmer to hareeat execution)

e the second is the parallelism degree, i.e. the number ofipigpeocesses that have to be set up to execute
thereducevectorcomputation.

4.2.7 The parfun and pardo skeletons

The parfun (of type (unit—unit—« stream— (3 stream)—a stream— 3 stream) skeleton is the very dual of
theseqskeleton. In simple words, one used to warp a regular fundtidoe a skeleton unit witkeq now one can
also wrap a full skeleton expression insidpaafun to obtain a regular stream processing function, usable nath
limitations in any sequential piece of code parfun encapsulated skeleton function behaves exactly as a normal
function that receives a stream as input value, and retustream as output value.

Finally, thepardo of type (unit—«a)—« combinator defines the scope of the expressions that mayhase t
parfun encapsulated skeleton expressions.

In order to have thearfun andpardo work correctly together the following scoping rule has tcsbéowed:

¢ functions defined via thparfun combinator must bdefined beforéhe occurrence of theardo combinator,

e thoseparfun defined functions can only bexecuted withirthe body of the functional parameter of the
pardo combinator,

e noparfun can be used directly insidepardo combinator.

Thus, due to the scoping rule in tipardo, the general structure of an OCamlIP3L program looks like the
following:

(* (1) Functions defined using parfun x)
let f = parfun(skeleton_expression)
let g = parfun(skeleton_expression)

25

(*x (2) code referencing these functions under abstractions x)
lethx=..(f..)...(g..) ..

(* NO evaluation of code containing a parfun is allowed outside pardo x)

(* (3) The pardo occurrence where parfun encapsulated functions can be called. x)
pardo
(fun () —
(* NO parfun combinators allowed here x)
(* code evaluating parfun defined functions)

leta="f..
letb=nh...
)

(x finalization of sequential code here x)

4.2.8 Load balancing: the colors

In the OCamlIP3L system, the combinators expressions galrershape of the process network and the execution
model assumes a “virtual” processor, for each process. Eppimg of virtual to physical processors is delegated
to the OCamlIP3L system. The mapping is currently not optichin the system. However, programs and machines
can be annotated by the programmer ugialprs which can pilote the virtual-to-physical mapping process

The idea is to have the programmer to rank the relative “wigighskeleton instances and the machine power
in a range of integer values (the colors). Then, weights aeel o generate a mapping in which load is evenly
balanced on the partecipating machine according to thiaitive power.

We do not present this feature here (and refear to the OCammiaBual for more details) because we do not
used it for our implementation.

4.3 BSML Implementation.

At this time, the approach taken when implementing thesketkes in BSML was relatively naive. But there are
already some advantages to using BSML-based skeletonsi B8Mbe used on a wide variety of communication
libraries, such as PUB, MPI and TCP/IP; whereas OcamlIP3lugksvith TCP/IP. Thus, our skeletons can run on
high-end parallel hardware.

For simplicity, we although generate the program in methifasas a simple string, we will use a MetaOCaml-
like syntax: the meta-code will be quoted between “.<>.".

4.3.1 Execution of process networks

The combination of P3L’s skeletons generate a process netagraph). This network takes in input a stream of
data. Then each datum is transformated by the network imditlyeof other data and finally the ouput is another
stream of data of the same arity.

The most important information is that each execution ofacess network is completly independant from an-
other ones. In this way, they can be composed. We will usegaailel composition operator (tlseperposition)
to do that. Thus, if we suppose that the stream contaidata,n times the execution of the network would be
composed using theuperpositon The general execution of a network (skelepardo) is coded as follow:

let pardo eval_net datas =
super_list (Array.to_list (Array.mapi
(funid () —eval_net (ref (imod (bsp_p()))) d) (Array.of_list datas)))

if we suppose thalatas is the stream of data (here a list) a@ghl_net is the execution of a process network. Each
evaluation is depending of a reference counter parametehwlesign the placement of the first computation. This
placement of the tasks, using this counter, is just a naiwvedaobin.

To n-compose execution of the networks, we usager_list which is a simple:-ary superposition:

26

let rec super_list = function

(-
| hd::tl —let nhd,ntl = super hd (fun () —super_list tl)
in nhd::ntl

To execute just one network, we thus need as parameters tecamad a data. Then, we define a function that
incremente this counter (modufd, defined the triplet which represent the network (inpupatiand the parallel
stream computation) from a skeleton expression and exécukais is the goal of theval_net function which
have the following code (generated from a skeleton exprag3i

let eval_net place data =

let noSome (Some x) =x in

let incr_place () = place:=(!place+1) mod (bsp_p()) in

let inf,outf,flow = .<bsml_trans s>. in

noSome ((proj (flow (mkpar (fun pid —if pid=inf then Some data else None)))) outf)

flow is the execution of the network which haivd has processor input arditf as output. After the execution of
the network, the result is globally exchanged using the itikiemproj. The stream is created usingkpar such
that only processanf has a non empty value.

Now, let see how to produce this process network from a skelexpression (functiohsml!_trans).

4.3.2 From skeletons to BSML codes

Our implementation takes a skeleton description and ge®eBSML code from it which symbolise the execution
of the network. Our expressions of skeletons are represgdmnytéhe following type:

type skel _tree =
Seq of code_ocaml
| Pipe of skel_tree * skel_tree
| Farm of int x skel_tree
| MapVector of int x skel_tree
| Loop of code_ocaml * skel_tree

Noting that once can thinks that we can implement OCamlIP8kédetons as a library of combinators for
BSML. This is certainly possible but not in a natural way ahnigd further work is not clear to be very usefull.
In our setting, a skeleton (sub-part of the network) is thin @ aninput CPU, anoutput CPU and a BSML

function:
in out
— |

where “node” is a function that takes a data from processurdnd return a data to processor “out”. This will
be implemented in BSML as a tripla@it«int«(« option par— S option par) where the two first parameters are
respectively input and output of the network and the last tme function that compute the data on the stream.
The P3L stream is implemented as a parallel vector of opt@dmewhere one and only one processor keeps a non
empty value (the data of the stream). The full stream coulidhbe a list of these vectors.

The BSML code is recursively generated on a skeleton expressing a functiorbsml_trans: skel_tree —
code_BSM L, from which we will excerpt the relevant parts.

Each skeleton is parametrized by a placement referenceléibe counter). This allows to distribute the tasks
in a round robin fashion. Also, they are parametrized lata variable, representing the data stream.

In order to transfer data from CPU to CPU, we define the toaistfan sendto:

let sendto outf inf data =
apply (put (apply (mkpar (fun pid —
if pid=outf then
(fun d dest —if dest=inf then d else None)
else
(fun _ _ —None)))
data)) (replicate outf)

27

which sends a data from processmtf to processoinf.
In Figure in the next of the text, the big arrow represent tiefionbsmli_trans and its recursive calls (generate
a new network from another networks).

4.3.3 Implementation of seq(f).

Given a sequential OCaml functigh the generated code for this skeleton is:

let pl=(!place) in
incr_place ();
(pl,pl,(fun data —
apply (mkpar (fun pid —
if pid=pl
then (function Some d —(Some ((.<f>. ()) d)) | None —None)
else (fun _ —None)))) data)

that is the resulting network is thus the trip(pt,pl,(fun data —new_data)) where the functiory only executes
itself on the designated CPlf designated by the countplace), returningNone elsewhere.

4.3.4 Implementation of farm(n,s).

Because we have a fix numbeof processors, we ignore theparameter which represent the “number of work-
ers”. The parallelism degree {n this skeleton expression) is thus all the timeThis is not a problem since be
distributed the workers in a round robin manner (even if ihisaive).

Thus, the code generated farm (n, s) is simply the code generated for the skeleton

4.3.5 Implementation of pipeline6,ss).

The generated code for this skeleton is:

let in1,outl,flowl= .<bsml_trans s1>.
and in2,out2,flow2= .<bsml_trans s2>. in
if (outl=in2) then
(in1,out2,(fun data— flow2 (flowl data)))
else
(in1,out2,(fun data —flow2 (sendto outl in2 (flowl data))))

that is we recursively genereted the triplet representiegietworks fos; ands; and compact then to generate a
new triplet refleting the pipe network:

inl outl
= - inl out2
- —> —
in2 out2
—

Then, if the output of, and the input of; are on the same CPU, we directly compose them. If they arestincti
CPUs, we perform aendto to connect the output of; to the input ofss. This is exactly what is reflected in the
code. As attended, the input of the resulting network is tipeii of the network of; and the output that of;.

Noting that for a BSP machine with processors and a skeleton expression using one pipe of tyueséal
processus, the tasks would be distributed on all proce$sersuppose a typical stream of more theglements).
Then, a single barrier would occurs sending data from a pemreto another one. This is clearly not the most
efficient manner to execute the whole program but this is @ksarly not an inefficient one.

28

4.3.6 Implementation of loop(f,s).

Our implementation ofoop is a simple recursive function, which executes thekeleton until thef condition
holds true:

let i,0,task= .<bsml_trans s>. in
(i,0, (let rec tmp data =
if (proj (applyati (fun d —.<f>. (noSome d)) (fun _ —false) data) i)
then (sendto i o data)
else tmp (sendto o i (task data))))

that is:
Lo - t

sendto out in

4.3.7 Implementation of map(,s).

Our implementation ofnapvector is probably the most interesting one. Once againptparameter (parallelism
degree) is not unused due to a fix number of processor and wod robin strategy for the placement of the tasks.
The method for this skeleton is as follow:

First, a new task is dynamically created for each elemertefriput vector of the stream and stored in the list
of tasks call ntasks!. Each task is the execution of the métgenerated by the recursive calligfm!_trans on
S.

Then, once all the tasks created, their executiorsaperposedisingsuper_list For each execution, the input
processoipl of the network send a data of the vector to the processor thet been dynamically designated to
execute the sub-network (that ©f The parallelism arises from the input data stream beisgibuted over all
superposed processors.

Finnaly, once the processing terminated, the functionstaaiiuild gathers the results to the processor which
has been designated to be the output of the full generatasbrietThis is exactly what is reflected in the code:

let pl=('place) in (pl,pl,(fun data —
let ntasks =ref [] in
let size =
noSome ((proj (applyat pl
(fun t —Some (Array.length (noSome t))) (fun _ —Some 0) data)) pl) in
for j=0 to (size—1) do
incr_place ();
let i,0,task= .<bsml_trans s>. in
let new_task=
(fun () —sendto o pl
(task (sendto pl i
(parfun (function Some t —Some t.(j) | None —None) data)))) in
ntasks:=new_task::(ntasks);
done;
rebuild pl (super_list Intasks)))

Whererebuild transforms a list of vector (data only on procegsiito a vector of array (array only on processor
pl):

let rebuild pl |_vector =
let rec tmp = function
[=mkpar (fun pid —if pid=pl then Some [] else None)
| hd::tl —parfun2 (function (Some d) —(function (Some I) —(Some (d::l)) | None —None) | None —(fun _ —None))
hd (tmp tl)
in parfun (function Some | —Some (Array.of list I) | None —None) (tmp |_vector)

29

let PDE_solver =
parfun (fun () —
(loop ((fun (v,continue) —continue),
seq(fun _ —fun (v,_) —v)
|[| mapvector(seq(fun _ —compute_sub_domain),3)
|l seq(fun _ —projection) ||| seq(fun _ —bicgstab) ||| seq(fun _ —plot))))

Figure 4.7: Skeleton code fragment from a Poisson solver

This figure resume the idea of the implementation wheiethe dynamic size of the input vector :

This skeleton is a good sample where system threads woulzbrsatfficient: the size of typical data of skeletons
programs would make the old implementation of the supetiposiinusable.

4.4 Examples

4.4.1 Code generation of a simple skeleton expression

Take the following skeleton expression:
Pipe((Seq (fun () x —float (x+1))),(Seq (fun () x —xx*.2.)))
Using our code generation, we will obtain the following BSibde:

let eval_net place data =
(* tools *)

let noSome (Some x) = x in
(x increment counter x)

let incr_place () = place:=('place+1) mod (bsp_p()) in
(x first process of the pipe x*)

let inf,outf,flow = ((let in1,outl,flowl= (let pl=('place) in incr_place ();(pl,pl,(fun data —

apply (mkpar (fun pid —if pid=pl
then (function Some d —(Some (((fun () x —float (x+1)) ()) d)) | None —None)
else (fun _ —None)))) data))

(x second process of the pipe x)

and in2,out2,flow2= (let pl=(!place) in incr_place ();(pl,pl,(fun data —

apply (mkpar (fun pid —if pid=pl
then (function Some d —(Some (((fun () x —xx*.2.) ()) d)) | None —None)
else (fun _ —None)))) data)) in

(x combination of these twi processes x)

if (outl=in2) then (inl1,out2,(fun data— flow2 (flowl data)))

else (in1,out2,(fun data —flow2 (sendto outl in2 (flowl data)))))) in
(x final execution of the network x)
noSome ((proj (flow (mkpar (fun pid —if pid=inf then Some data else None)))) outf)

4.4.2 A PDE solver on multiple domains

Our second example is a parallel PDE solver which works ont afseubdomains, taken from [11]. On each
subdomain it applies a fast Poisson solver written in C. Keéeson expression of the code is shown in Figure 4.7
and the coupling technique (and full equations) could beifirfd1].

30

All the tests were run on the new LACL cluster composed of 2@lIRentium dual core E2180 2Ghz with
2GBytes of RAM interconnected with a Gigabyte Ethernet oekwUbuntu as OS).

We present the benchmarks when the interface meshes matchrasdom generated sub-domains (different
cases on real life inputs are described in [11]). The prieci this extensibility test is as follow: increases the
number of processors as well as size of data. The goal is ppd&much as possible a constant computation time,
although the overall number of tasks is increased and conuations are required to couple the global problem.
In this context, for each input, one processor is associatddone sub-domain and the global domain is divided
into 1, then into 2,4 ... sub-domains.

Various manners of decomposing the global domain in a stredtway are explored. The number of sub-
domains along the axis is denoted By (resp. N,, IV.) and each sub-domain possesses approximately 50000
cells (time to sequentially decompose a sub-domain is appedely linear). There will be at least as many
generated super-threads.

Performances (minutes and seconds) of OCamlIP3| and skelgt@®SML (using its MPI implementation) are
summarised in the following table:

| (Nz, Ny, N.) | Nb procs| OCamiP3I| BSML ||

1x1x1 1 20.56 21.29
1x1x2 2 24.06 27.63
1x1x4 4 24.78 28.23
1x1x8 8 25.05 28.97
1x1x16 16 26.53 30.67
1x2x2 4 20.78 25.14
1x2x4 8 24.45 28.36
1x2x8 16 25.56 29.84
H 1x4x4 ‘ 16 ‘ 26.89 ‘ 29.89 H
2%x2x2 8 25.88 27.21
2x2x4 16 27.89 32.75

As might be expected, OCamlP3l is faster than our naive imgtgation but not that much. Barriers slow down
the whole program but bulk-sending accelerates the congations: in the P3L running there exists a bottleneck
due to the fact that sub-domains are centralised and thiertffe amount of communication treated by one process
may cause an important overhead. In BSML, the data are eaehdompletely distributed, which reduces this
overhead but causes a loss of time in the division and disioib of the data.

31

Chapter 5

Conclusions

5.1 Related works.

5.1.1 Divide-and-conquer paradigms.

A general data-parallel formulation for a class of dividetaonquer problems was evaluated/in [2]. A com-
bination of techniques are used to reorganise the algogtiata-flow, providing great flexibility to efficiently
exploit data locality and to reduce communications. Buséhtechniques are only defined for a low-level parallel
language, High Performance Fortran [28]. [In [22], the arghwesent a new data-parallel C library for Intel’s
core-processors which have a divide-and-conquer prienitiiere some optimisations have been done using the
BSP model.

Many algorithmic skeletons languages offers divide-aodgtier skeletons. Different optimisations have been
designed for performance issues.

A methodology (and a language in [25]) based on a space-tiappimg is presented in [24]. It uses a geometric
computational model based on coordinate transformatiatiswhich time (the schedule) and space (the proces-
sor) can be made explicit. This technique may be applied tass ©f divide-and-conquer recursions, resulting in
a functional program skeleton and its parallel impleméntiagvith MPI. But cost prediction is too hard, making
algorithmic optimisations harder than in the BSP model.

In [26], the proposed approach distinguished three levieddstraction and their instantiations. (1), a ML like
language defines the static parallel parts of the prograimslahguage comes with a partial evaluator which acts as
a code transformer using MetaOCaml. (2), an implementati@ndivide-and-conquer skeleton demonstrates how
meta-programming can generate the appropriate set of comations for a particular process from an abstract
specification. (3), the application programmer composepthgram using skeletons, without the need to consider
details of parallelism. However, no cost prediction norcégfit code generation are possible. For efficient code,
[16] proposes the same approach using C++ templates. A kasitens C++ language is compiled into a C++
MPI code but no divide-and-conquer skeleton is at this tinowided. Also, in [4], the authors have implemented
a divide-and-conquer skeleton using the functional andllgtanguage Eden.

5.1.2 CPS transformations.

CPS has been first introduced in [30] for semantics purpodevane massively used for various implementations
of Scheme and ML the language [1]. The original CPS transéition was the most simple one; this transformation
introduce too many unnecessary reductions (called adratiie redexes) and more efficients CPS were defined
in [14].

The idea of using CPS (or the call-cc ope@}dor thread implementation comes from [38]. Then, many
authors used them to implement multi-threaded extensibssquential languages [34, 32] such as ML [12, 5],
Java|[3] or C [10]. Most of the time, a call-cc operator is usatisome of them use a CPS transformation. In [17],
the authors present some generic tricks to easily add effitieeads in a sequential language. But they suppose

A call-cc (call-with-current-continuation) primitive & control structure which is close to a CPS transformation.

32

a call-cc operator that does not existO@amni (at least not in an efficient form). Finally, the STALIN Schefm
compiler seems to implement a form of a flow-directed CPS eiwn.

We can notice that the formal proof using a proof assisteatt fhograms can be systematically translated to
semantically equivalent CPS programs is a new field of redd6] and can be useful for our purpose.

5.2 Conclusion.

We have formally defined a new implementation of a multi-tldiag primitive (called parallel superposition) for
a high-level BSP and data-parallel language. Efficiencyceoms lead us to use lightweight threads, whose im-
plementation relies on a global flow-directed CPS trans&tion. Our flow analysis is defined as an instrumented
type system, allowing us to both guide and feed the particd @Bnsformation. In order to compile polymor-
phically typed programs, we perform a monomorphisatiors pasch (in conjunction with defunctorisation) also
fosters the efficiency of numerical code. Our implementatielies on a semantic investigation, allowing us to
better trust our transformations - and it works on an imparsabset of th€Cam language.

The ease of use of this new implementation of the superpasitill be experimented by implementing BSP
algorithms described as divide-and-conquer algorithrtherliterature and creating a less naive implementation
of the ocamlp3l skeletons [13]. Our current implementatigiributes the tasks in a simple round robin fashion;
and in the interest of load balancing a smarter heuristitdche developed.

We will also investigate new kinds of optimisations such gmkyvariant flow analysis to generate less CPS
code (which are less efficients @Camnd than direct-style ones).

2See ftp://ftp.ecn.purdue.edu/qobi/research-statepeft

33

Bibliography

(1]
(2]

(3]
(4]

(5]

(6]
(7]

(8]
(9]

[10]
[11]
[12]
[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

A. W. Appel. Compiling with ContinuationsCambridge University Press, 1992.

M. Aumor, F. Arguello, J. Lopez, O. Plata, and L. Zapata.d&ta-parallel formulation for divide-and-conquer altfums. The
Computer Journal44(4):303-320, 2001.

A. Begel, J. MacDonald, and M. Shilman. Picothreads:htigieight threads in java. Technical report, Microsofta@sh, 2002.

J. Berthold and R. Loogen. Analysing dynamic channetgdpology skeletons in eden. Technical Report 0408, lstitr Infor-
matik, Lubeck, September 2004. (IFL'04 workshop), C. Gkelnd F. Huch eds.

E. Biagioni, K. Cline, P. Lee, C. Okasaki, and C. StonefeSar-space threads in standard rHligher-Order and Symbolic Compu-
tation, 11(2):209-225, 1998.

R. H. Bisseling.Parallel Scientific Computation. A structured approachngsBSP and MRI1Oxford University Press, 2004.

0. Bonorden, B. Juurlink, I. Von Otte, and O. Rieping. TRedlerborn University BSP (PUB) libraryarallel Computing29(2):187—
207, 2003.

P. Brinch-HansenStudies in Computational Science: Parallel ProgrammingaBagms Prentice-Hall, 1995.

A. Chan, F. Dehne, and R. Taylor. Implementing and TesB&M Graph Algorithms on PC Clusters and Shared Memory Megshi
Journal of High Performance Computing Applicatio2605. to appear.

J. Chroboczek. Continuation Passing for C: A spaceiefit implementation of concurrency. Technical reportSEBniversity of
Paris 7), 2005.

F. Clément, V. Martin, A. Vodicka, R. Di Cosmo, and P. \8leDomain Decomposition and Skeleton Programming with O€a8m
Parallel Computing 32:539-550, 2006.

E. C. Cooper and I. G. Morrisett. Adding threads to staddnl. Technical report, School of Computer Science, Gaenklellon
University, 1990.

R. Di Cosmo, Z. Li, S. Pelagatti, and P. Weis. SkeletabPal Programming with OcamIP3L 2.@arallel Processing Letterd8(1),
2008.

O. Danvy and L. R. Nielsen. Cps transformation of betdexes.Information Processing Letterses@4(5):217—-225, 2005.

Z. Dargaye and X. Leroy. Mechanized verification of CR&hsformations. Irogic for Programming, Artificial Intelligence and
Reasoning, 14th Int. Conf. LPARdlume 4790 oL NAI, pages 211-225. Springer, 2007.

J. Falcou, J. Serot, T. Chateau, and J. T. Lapreste. QUAEfficient C++ Design for Parallel Skeletongarallel Computing
32(7-8):604-615, 2006.

M. Gasbichler, E. Knauel, M. Sperber, and R. A. KelseypwHo Add Threads to a Sequential Language Without GettingylEal
Up. In Scheme Workshop 2003003.

F. GavaApproches fonctionnelles de la programmation paralléléest méta-ordinateurs. Sémantiques, implantations efication.
PhD thesis, University Paris XII-Val de Marne, LACL, 2005.

F. Gava. Implementation of the Parallel SuperpositioBulk-Synchronous Parallel ML. In Y. Shi, G.D.v. Albada,DJongarra,
and P.M.A. Sloot, editorsThe International Conference on Computational Scienc&@8Y, Part | volume 4487 ofLNCS pages
611-619. Springer-Verlag, 2007.

F. Gava. A Modular Implementation of Parallel Data $tuwes in BSML.Parallel Processing Letterd8(1):39-53, 2008.

A. V. Gerbessiotis and L. G. Valiant. Direct Bulk-Symohous Parallel AlgorithmsJournal of Parallel and Distributed Computing
22:251-267, 1994.

A. Ghuloum, E. Sprangle, J. Fang, G. Wu, and X. Zhou. CElé&xible Parallel Programming Model for Tera-scale Arebitires.
Technical report, Intel Research, 2007.

N. Heintze. Control-Flow Analysis and Type SystemsAliMycroft, editor,Static Analysis Symposium (SA8)mber 983 in LNCS.
Springer, 1995.

C. A. Hermann and C. Lengauer. On the space-time mapgiaglass of divide-and-conquer recursioRarallel Processing Letter
6:525-537, 1996.

C. A. Hermann and C. Lengauer. Hdc: A high-order langufag divide-and-conqueParallel Processing Letterd 0(2-3):239-250,
2000.

34

[26]

[27]

(28]
[29]

[30]
[31]

[32]

[33]
[34]
[35]

[36]
[37]
[38]

C. A. Herrmann. Functional meta-programming in thestarction of parallel programsParallel Processing Letters2005. to
appeatr.

J. Kim and K. Yi. Interconnecting between CPS terms ao-@PS terms. In A. Sabry, editdrhird ACM SIGPLAN Workshop on
Continuations (CW)number 545 in Technical Report. Computer Science Depattrireliana University, 2001.

C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and bkel. The High Performance Fortran HandbookIT Press, 1994.

F. Loulergue. Parallel Superposition for Bulk Synatwas Parallel ML. In Peter M. A. Sloot and al., editdrgernational Conference
on Computational Science (ICCS 2003), Part Humber 2659 in LNCS, pages 223—-232. Springer Verlag, j0082

G. D. Plotkin. Call-by-name, call-by-value and the laala-calculusTheoretical Computer Scienck(2):125-159, 1975.

F. Pottier and D. Rémy. The Essence of ML Type Infereigd8enjamin C. Pierce, editoAdvanced Topics in Types and Program-
ming Languageschapter 10, pages 389—-489. MIT Press, 2005.

O. Shivers. Continuations and threads: Expressinghmaaoncurrency directly in advanced languagesSdénond ACM SIGPLAN
Workshop on Continuation4997.

D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questis and Answers about BSBcientific Programmings(3):249-274, 1997.
S. Srinivasan. A thread of one’s own. INew Horizons in Compilers Worksha006.

A. Tiskin. The Design and Analysis of Bulk-Synchronous Parallel Athors PhD thesis, Oxford University Computing Laboratory,
1998.

A. Tiskin. A New Way to Divide and ConquePRarallel Processing Letterd 1(4):409-422, 2001.
P. Wadler. Monads and composable continuatiduisp and Symbolic Computatipi(1):39-56, 1994.
M. Wand. Continuation-based multiprocessingLisp Conferencepages 19-28. ACM, 1980.

35

Appendix A

Longer BSML examples

To illustrate our programming language BSML, we present2sit problems: sieve of Eratosthenes and a parallel
sorting.

A.1 Sieve of Eratosthenes

The sieve of Eratosthenes generates a list of primary nustimow a given integes. We study 3 parallelization
methods. We generate only the integers that are not mutifpitee 4 first prime numbers and we classically iterate
only to /n.

Fig./A.1 gives the BSML code of the 3 methods. We used theviatig functions: elim:int list—int—int list
which deletes from a list all the integers multiple of theegivparameterfinal_elim:int list—int list—int list
iterateselim; seq_generate:int —int—int list which returns the list of integers between 2 bounds; saldct:int
—int list—int list which gives the,/nth first prime numbers of a list.

A.1.1 Logarithmic reduce method.

For our first method we use the classical parallel prefix cdatmn (also call folding reduce) :

scan @‘Uo‘--- ‘Up_l ‘ :‘UQ‘UO@Ul"" ‘@Z;é?}k‘

We use a divide-and-conquer BSP algorithm (implementeagusiesuper primitive) where the processors are
divided into two parts and the scan is recursively appliethtse parts; the value held by the last processor of
the first part is broadcasted to all the processors of thensiggart, then this value and the values held locally are
combined together by the associative operatan the second part. In our computation, the sent values ate fir
modified by a given functionsglect to just sent the/nth first prime numbers)

The parallel methods is thus very simple: each procedsolds the integers betweerx % +land(i+1) x %.
Each processor computes a local sieve (the procéssontains thus the first prime numbers) and thensman
is applied. We then eliminate on processtiie integers that are multiple of integers of processers, i — 2, etc.

A.1.2 Direct method.

It is easy to see that our initial distribution (bloc of inéeg) gives a bad load balancing (procegser 1 has the
bigger integers which have little probability to be prim&e will distributes integers in a cyclic wayz is given
to processoi wherea modp = 7). The second method works as follows: each processor campubcal sieve;
then integers that are less & are globally exchanged; a new sieve is applied to this ligttegers (thus giving
prime numbers) and each processor eliminates, in its orirltegers that are multiples of thignth first primes.

A.1.3 Recursive method.

Our last method is based on the generation of\theh first primes and elimination of the multiples of this ligt o
integers. We generate this by a inductive functionnonVe suppose that the inductive step gives {heh first

36

let eratosthene_scann =
let p=bsp_p() in
let listes = mkpar (fun pid— if pid=0 then seq_generate (n/p) 10
else seq_generate ((pid+1)*(n/p)) (pid«(n/p)+1)) in
let local_eras = parfun (local_eratosthene n) listes in
let scan_era = scan_super final_elim (select n) local_eras in
applyat O (fun | —2::3::5::7::1) (fun |—l) scan_era

let eratosthene_directn =
let listes = mkpar (fun pid— local_generation n pid) in
let etapel = parfun (local_eratosthene n) listes in
let selects = parfun (select n) etapelin
let echanges = replicate_total_exchange selects in
let premiers = local_eratosthene n
(List.fold_left (List. merge compare) [] echanges) in
let etape2 = parfun (final_elim premiers) etapel in
applyat O (fun 1—2::3::5::7::(premiers@l)) (fun |—I) etape2

let rec eratosthene n =
if (fin_recursion n) then apply (mkpar distribution) (replicate (seq_eratosthene n))
else
let carre_n = int_of_float (sqrt (float_of_int n)) in
let prems_distr = eratosthene carre_n in
let listes = mkpar (fun pid —local_generation2 n carre_n pid) in
let echanges = replicate_total_exchange prems_distr in
let prems = (List.fold_left (List. merge compare) [] echanges) in
parfun (final_elim prems) listes
let eratosthene_recn =
applyat O (fun 1—2::3::5::7::1) (fun |—l) (eratosthene n)

Figure A.1: BSML code of the the parallel versions of the sie¥/Eratosthenes.

primes and we perform a total exchange on them to eliminagesan-primes. End of this induction comes from
the BSP cost: we end whenis small enough so that the sequential methods is fastetthiegparallel one.

After some benchmark (not presented here), we obtain a-$inpar acceleration for the recursive method.
This is due to the fact that, using a parallel method, eachgzsor has a smaller list of integers and thus the
garbage collector d®Cani is called less often.

A.2 Parallel sorting

Sorting is a classical problem of parallel algorithms whigltomplex and covers a huge range of program con-
structions. Many parallel algorithms, including the graf8], require that data be sorted on processors and also
between them: the procesgarontains data smaller than those of processeor. Moreover, we must that data are
well distributed over the processors for a good load-batendt is not so easy to write a correct implementation
of parallel sorting algorithms, even without any optimiaat since a small mistake in such complex algorithms
immediately has some catastrophic consequences.

Take a set of element¥’ of sizen. We assume that the initial data structurevas been partitioned intp
sub-structures!, ..., 2P of sizen/p with a sub-structure by processor. We nateb) an open intervaile. the set
of all elements: € X such that < ¢ < b.

A naif algorithm would be to gather data on one processon thesort them and scatter on all processors this
set of data. It is easy to see that this method is completKicrent.

Many parallel sorting algorithm have been proposed witfediint complexities. Here, we are interested by the
sampling sort algorithn{fPSSR) in its BSP version [35].

The PSRS algorithm proceeds as follows. First, all sutegirasz? (we assume that their lengths arep?) are
sorted independently with a sequential sort algorithm ar gmocessoy. The problem now consists of merging
the p sorted sub-structures. Each process selects from itstautitsep + 1 elements (the first and last elements

37

(x generic functions :
compare:(a —a —int) = compare two elements
seq_sort:((a« —a —int) —a —) = sequential sorting
select:(int — 3 —~) = selection of a sample
merge:((a —a —int) —~ list —3) = merging the samples (sorted)
to_be_send:((a¢ —a —int) —int —v —(3 — ¢) =construction of the
blocks to be send

get:(d —int — ¢) = select the ith block to be send
merge_block:((c«¢ —a —int) — ¢ — ¢ — ¢) = merge 2 received blocks

and return the final result
vec:3 Bsml.par = the parallel vector to sort x)

let tiskin_bsp_sample_sort_wide compare seq_sort select merge_samples to_be_send
get merge_block vec =
(* number of processors)
let p=bsp_p() in
(* merge the sending blocks at the end x)
let final_merge f =
let rec final n tmp =
if n=p then tmp else final (n+1) (merge_block compare tmp (f n))
in final 1 (f 0)
in
(* Super—step 1 x)
let vec_sort = parfun (seq_sort compare) vec in
let primary_sample = parfun (select p) vec_sort in
let totex_prim_sample = replicate_total_exchange primary_sample in
(* Super—step 2 %)
let scd_sample = select p (merge_samples compare totex_prim_sample) in
let elts_to_send = parfun (to_be_send compare p scd_sample) vec_sort in
let to_send = put (parfun get elts_to_send) in
(* Super—step 3 %)
parfun final_merge to_send

Figure A.2: BSML code of a generic BSP sample sorting alporit

must be selected) for the primary sample and there is a tethbmge of these samples. We nofe. . ., z}} the
first sample of the sub-structusé (of processor). It cut the sub-structure? into p primary blocks (of size:/p?)
and we note therfig, z1], ..., [z}, Z}].

In the second super-step, each process reads thép + 1) primary samples, sorts them and selects 1
secondary samples (in the same manner). We note these sobtedtiructureg?. The second primary sample is
notedzo, ..., z,. Note that this sample is the same on each processor. Thigesants the elements of (and
not of z9) into p secondary blocks which are open intervals, z1), ..., (Tp—1, Zp).

In the third super-step, each processor discards the vidaedo not belong to the assigned secondary block :
each processay takes the elements (from other processors) from the opervaitz,, z,41) (with 0 < ¢ < p)
and then merged the receveid values.

Figure A.2 shows a generic implementation of this BSP allyori

38

Appendix B

Proof of lemmas and theorems

Proof for lemmad 2.3.1 (stability of typings by substitution). Wepeed by induction on the derivation Bfz :
The : 7.

/

e If e=z, [v/x]e =vandr =7'. By hypothesis' v : 7'.
e If e =y wherex # y, [v/x]e = y. The type of the expression is unchanged.

o If e=ab, [v/z]e = [v/z]a [v/z]b. By induction hypothesis, the types @fandb are preserved during the
substitution. Using the typing rule for application, we dee the type ofv/x]e:
'k w/zla : (fo,70 —711) TFv/zb: 7
Loz : 7k [v/zle : (faV flow(my),annot(m))

e If e = \y.b, the type derivation is of the following shape:
'z : 7,y : 7o,Fb : 7
Tz : 7ke: (flow(r)V flow(r), 70 — 71)
— If x =y, [v/z]e = e. The type of the expression is unchanged.
—lfy#xzand & fo(v)orz & fu(b)), [v/x]e = Ay.[v/z]b. By induction hypothesis, the type bis
preserved during substitution. Thus, we can derive:
Ty : 7o,F [v/z]b : 7y
L'k [v/zle @ (flow(ry) V flow(m), 70 — T1)
—Ify#zand € fo(v) andz € fo(b)); with z fresh, [v/x]e = Az.[v/z]([z/y]b). We won'’t prove
that substituting a fresh variable for another variablgetpreserving, but we use this lemma to state
thatl',x : 7,z : 70,F ([2/y]b) : 71. We can then derive :

Loz @7z 0 10,k [2/ylb : 7y
Loz o 7F Az [z/ylb : (flow(ry) V flow(T1), 70 — T1)
Using the induction hypothesis, we can perform a type-pvésg substitution such that:
L' [v/a](Az.[z/y]b) = (flow(ro) V flow(r1), 70 — 1)
As shown in a previous case, this reduces to:
I'E (Az.Jv/z]([z/y]b)) : (flow(ry) V flow(Ty), 790 — T1)

Proof for theorem 2.3.2 (soundness w.yield reductions). We will prove this theorem on a subset of the®ou
language, namely the core lambda-calculus glakl . Before proceeding to the proof, we state thietd is not

a value, and we recall the small-step operational semaottite lambda-calculus under théreduction rule:

APPRIGHT APPLEFT
€y — 6/2 €1 — 6/1
(Ax.e)v By [v/x]e e1ey — €16 e1v — e yield — ()

We proceed by induction on the reduction sequence of

39

e If ¢ =vyield, the theorem trivially holds.

e If e =e; v —€) v, and ayield is reduced ire; —¢; by induction hypothesis, flow() = Z. Using the typing
rule for application, flong) = 7.

o If e = e1e9 —e; €}, and ayield is reduced ire; —¢); by induction hypothesis, flow§) = Z. Using the
typing rule for application, flow() = Z.

o If e = (A\z.b)v —[v/z]b, ayield is reduced while normalizingy/x]b and flow(v/x]b) = Z. Typings are
stable by substitution (Lemma 2.3.1), so fléyv Z. Using the typing rules for abstraction then application,
we derive flowg) = 7.

Proof forlemmd 2.3.4 (extended monadic substitution). We prddgeinduction on the shape af
e If a = x: the proof follows by reduction and application of lemma.2.3
e If a =cora=yield: trivial case.

e If a = cd where flowg) =Z:
We derive from Fig. 2.2 that flow} = Pis not possible.

— If flow(d) = Z:
Ti[[v/xla] =T[[v/x)c [v/x]d]
=T [[v/x]c] @T:[[v/x]d] (definition of T})
= [[v]o/z|Th[c] @ [[v]o/z]Th[d] (ind. hyp.)
= [[v]v/2)(T1[c] @ T1[d])
= [[v]o/a)(T1[e d])
— Ifflow(d) = P:

N[lv/z]a] =T[lv/x]c [v/z]d]

=T[[v/z]c] Tr[[v/x)d] _
[[v]o/x)T1[e] [[v]o/«)T1]d] (ind. hyp.)
[[v]w/2](T1[c] Tr[d])
[[v]w/2](T1 [d])

e If a =cdwhere flowg) = P:
T[lv/x]a] =Ti[[v/x]c[v/z]d]
=ret [v/x](cd)
=[v/x]ret (cd)=[v/z] T1[(cd)]

e If a = \y.b where flowg) =Z:

— If z =y: easy.

—Ifz#yand @ & fu(v)orz & fu(b)):
T[lv/xla] =T[ry.Tr[[v/x]/b]]
=ret \y.T1[[v/x]/b]
At this point, two cases may arise. If flowy(= P, then flow() = Zandb contains no free occurences of
2 (proof by induction on the type derivation, easy and admdjtt®Ve can thus forget the substitution,
and the proof follows easily. If flows] = Z, we can apply the induction hypothesision
T[lv/zla] =Ti[Ay [[v]o/=]T1[0]]
= [[v]oX]T1 [Ay. T2 [b]]
—Ify#xand{ € fv(v) andz € fv(b)) with z fresh: we must avoid variable capture, so we state that
a = Az.[z/ylb. Sincex € fu(b), flow(b) = flow([z/y]b) = Z, allowing us to prune a case. Except that
point, the proof is similar to the previous case.

40

e If a = \y.b where flowg) = P: the proof is similar to the pure application case.
e If a =fix h Ay.b : proof similar to the lambda-abstraction, with added casdsmndle the fixpoint bindek.

e If a = match e with | kz; — e;. This proof is quite tedious if we don’t work modute-conversion, we
will thus adopt this hypothesis for the case at hand. The whsee flow@) = Pis as easy as the application
case and won't be exposed.

We first observe that the lemma holds for matching branc@§[v/x](k x; — €;)] = [[v]/X]T1[(kz; —
e;)]. The proof is by case on wether= z;, and by induction hypothesis enwhenever: # ;.

Using this fact, the proof is easy, by using the inductiondikipsis ore and the matching branches.
e If a=(c,d),a=ke: easy.
This ends the proof of the extended monadic substitutiomam
We also need these easily provable properties:
e Prop. 1: Qz.a) v = [v/z]a

Prop. 2:bind (ret v) (Az.b) ~ [v/z]b (first monadic law +@>)

Prop. 3: Ifa ~ o/, bind a (Az.b) = bind o (A\z.b).

Prop. 4: If flow@) = Panda = v, Ti[a] ~ Ti[v].

Prop. 5: Ifb ~ ¥/, ab ~ ab’ (proof by induction or).

Proof for theorem 2.3.5 (soundness of the partial CPS transfawm)atWe proceed by induction an=-v. Please
refer to Fig.| 2.1 for the definition of the rules. The cases;, t =z, t = Az.b, t =fix h Ax.b, t = (a,b), t = K a are
trivial (an application of lemma 2.3.3 is enough). If flayE P, the result is immediate.

e LET rule:

— If flow(ey) = Z,
T [[tﬂ =bind T} [[61]] ()\CL.Tl [[62]])
~ bind ret [ui], (Aa.T1[e2]) (ind. hyp. oney, Prop. 3)
« If flow(es) =P, a doesn't appear ins. The proof goes on as follow:
Ti[t] =~ Ti[es] (forgetting the substitution)
~ret [va], (ind. hyp.)
x If flow(eg) = Z, we can apply the induction hypothesis such that:
Ti[t] =~ [[vi]v/a]Ti[e2] = Ti[[v1/ale2] (Prop. 2, Lemma 2.3.4)
~ret [ua], (ind. hyp.)
— If flow(eq) = P,
T [[t]] =leta = e; INn1} [[62]]
~ [v1/a]T: [es]
~ T1[[v1/ale2] (Lemma 2.3.4)
~ret [va]s (ind. hyp.)

e APPrule:
Since flow() = Z, flow(e;) =Z (c.f. Fig.[2.2). Only the flow ot; may vary.

— If flow(es) = 7,

41

T [[t]] = bind (Tl [[61]]) ()\vl.bind (Tl [[62]]) ()\'UQ.’Ul ’UQ))
~bind (ret [Az.e],) (Avi.bind (T1[ez2]) (Ave.v1 v2)) (ind. hyp., Prop. 3)

~ [[\x.€],/vi](bind Ti[ea] (Ava.v1 v2)) (Prop. 2)

~ [)\I'.Tl [[e]]/vl](blnd T [[62]] ()\Ug.vl 1)2)) (definition of [[]]U)
~bind (Ti[ez2]) (Ava.(Azx.T1[e]) va)

~bind (ret [v'],) (Ava.(Azx. T [e]) v2) (ind. hyp., Prop. 3)
~ [[v']v/v2l((Aw. T [€])v2) (Prop. 2)

~ ((Az.Ti[e]) [v']0)

~ (([v'To/=]T1]e])

We have flow¢,;) = Z. Hence, flowg) =Z (c.f. Fig.[2.2).
x If flow(e) = P, e doesn't contain any free occurencexgfand we obtain:

Tit] =~ Ti[e] (forgetting the substitution)
~ret [v], =ret v (ind. hyp.)
« If flow(e) =Z:

Ti[t] ~Ti[[v'/z]le] (Lemma2.3.4)
~ret [v], (ind. hyp.)

— Ifflow(eg) = P,
T1 [[t]] = T1 [[61]] T1 [[62]]
~Tiel] Th[v'] = Thes] ret o (Prop. 4, Prop. 5)

~ Ty [Az.€] (ret V') = (ret \x.Ti[e]) (ret v') (definition of~, ind. hyp.)
~ [v'/x]T1[e]

~ Ti[[v'/x]e] (Lemmd 2.3.4)
~ret [v], (ind. hyp.)
e MATCH rule:
— If flow(e) =7,

T [[t]] =bind T [[6]] ()\’Ue.matChUeWith Kk; v; — 14 [[el]])
~ bind ret & [v], (Ave.matchvwith x; z; — Ti[e;])
~ [k [v]w/ve](matchvewith k; x; — Ti[e;])
~ match x [v],with k; z; — Ti[e;]
~ [[v]o/=]T1[€]]

Now, if flow(e’) = Pthen e’ contains no free occurence of and the lemma holds. Otherwise:

Tit] =~Ti[[v/x]e'] (Lemma2.3.4)

~ret v (ind. hyp.)
— If flow(e) = P, then the branches have all a flow equalZio

T [[t]] =bind T [[6]] ()\ve.matchvewith ki r; — 14 [[el]])
~ bind ret kv (Ave.matchv.with k; z; — Ti[e;])
~ [k v/ve|(matchvwith x; z; — Ti[e;])
~ match x vwith x; x; — T1[e;]
~ [v/x]T1[€]]
~ T [[v/z]€e']] (Lemmad 2.3.4)
~ret v (ind. hyp.)

e YIELD rule: follows from our definition of<.

e SUPERTUle: assuming thatuper always terminates, an induction followed by a case anatysithe code
of super shows that the final case iget (v, v2).

This terminates the proof of soundness for our partial CRStormation.

42

Appendix C

Coq script of Chapter 2

Using Coq version 8.1pl3.

Set Implicit Arguments.
Module Type MONAD.

Parameter M : forall (A : Type), Type.

Parameter ret : forall (A : Type), A —(M A).

Parameter bind : forall (A B : Type), M A —(A —M B) —M B.
Parameter run : forall (A : Type), M A —A.

Parameter equivalence : forall (A : Type), M A —M A —Prop.

Axiom is_reflexive : forall (A : Type) (x : M A), equivalence x Xx.
Axiom is_symmetric : forall (A : Type) (xy : M A), equivalence x y —equivalence y Xx.
Axiom is_transitive : forall (A : Type) (X y z: M A), equivalence x y —equivalence y z —equivalence x z.

Axiom left_neutral : forall (A B : Type) (f: A—M B) (a: A),
equivalence (bind (ret a) f) (f a).

Axiom right_neutral : forall (A B : Type) (m : M A),
equivalence (bind m (fun a: A =>reta)) m.

Axiom assoc : forall (AB C : Type) (m: M A) (k: A—=MB) (h: B —M C),
equivalence (bind m (fun x : A => bind (k x) h)) (bind (bind m k) h).

End MONAD.

Inductive thread (a : Type) : Type =
| Terminated : a —thread a
| Waiting : (unit —thread a) —thread a.

Inductive superthread_reduc (a b : Type) : thread a —thread b —Type :=
| Both_terminated : forall x0 x1,
superthread_reduc (Terminated x0) (Terminated x1)
| Left_terminated : forall x susp,
superthread_reduc (Terminated x) (susp tt) —
superthread_reduc (Terminated x) (Waiting susp)
| Right_terminated : forall x susp,
superthread_reduc (susp tt) (Terminated x) —
superthread_reduc (Waiting susp) (Terminated x)
| Both_running : forall (sO : unit —thread a) (s1 : unit —thread b),
superthread_reduc (sO tt) (s1 tt) —
superthread_reduc (Waiting s0) (Waiting s1).

Lemma thread_terminates (A B : Type) :
forall (t0 : thread A) (t1 : thread B), superthread_reduc tO t1.
Proof.
induction t0.
induction t1.
exact (Both_terminated a a0).

43

exact (Left_terminated t (X tt)).

induction t1.

exact (Right_terminated t (X tt (Terminated a))).
exact (Both_running t tO (X tt (tO tt))).

Qed.

Module SuperMonad <: MONAD.
Definition M (A : Type) := forall anstype, (A —thread anstype) —thread anstype.

Definition ret (A : Type) : A =M A :=
fun (x: A) anstype (k : A —thread anstype) => k x.

Definition bind (A B : Type) : M A —-(A =M B) =M B :=fun (m: MA) (f: A —M B) =>
fun ans k =>m ans (fun (v: A) =>fv ans k).

Definition yield := fun ans (k : unit —thread ans) => Waiting k.

Definition apply (AB : Type) : M (A =M B) =M A —M B :=
fun f arg => bind f (fun vf => bind arg (fun varg => vf varg)).

Definition run (A : Type) : M A —A :=
fun (e: M A) =>
let loop := (fix loop (m : thread A) :=
match m with
| Terminated x => x
| Waiting s => loop (s tt)
end)
in loop (e A (fun x => Terminated x)).

Fixpoint super_aux (a b : Type)
(t1 : thread a) (t2 : thread b)
(h: (superthread_reductl t2)) { structh }: M (a * b) :=
bind yield (fun u =>
match h return M (a = b) with
| Both_terminated x0 x1 =>
ret (x0, x1)
| Left_terminated x susp hO =>
super_aux h0
| Right_terminated x susp hO =>
super_aux h0
| Both_running sO s1 h0O =>
super_aux hO
end).

Definition super := fun (A B : Type) => ret (fun f1 => ret (fun f2 =>
let rl : thread A := apply (ret f1) (ret tt) (fun x => Terminated x) in
let r2 : thread B := apply (ret f2) (ret tt) (fun x => Terminated x) in
match rl, r2 return M (A x B) with
| Terminated x1, Terminated x2 =>

ret (x1, x2)
| Terminated x, Waiting s =>
super_aux (thread_terminates rl r2)
| Waiting s, Terminated x =>
super_aux (thread_terminates rl r2)
| Waiting sO, Waiting s1 =>
super_aux (thread_terminates rl r2)
end)).

(x Prove that super f g evaluates to (f tt, g tt). *)
Check super.

(x We need functional extensionality to prove the monadic laws ... x)
Axiom functional_extensionality :

44

forall (A B : Type), forall (fg : A —B),
(forall x,f x =g x) —f=g.

(x This lemma is much weaker than functional_extensionality. x)
Lemma eta_conversion :
forall (A B: Type) (f: A —B), fun x: A=>fx)=1.
Proof.
intros.
assert (forall x, (fun x =>f x) x = f x).
intros; reflexivity.
apply (functional_extensionality (fun x => f x) f).
intro;reflexivity.

Qed.

Definition equivalence : forall (A : Type), M A —M A —Prop :=
fun (A : Type) al a2 => forall k,exists a, (al k =a) /\ (a2 k = a).

Lemma is_reflexive : forall (A : Type) (x : M A), equivalence X X.
Proof.

compute.

intros.

exists (x k).

auto.

Qed.

Lemma is_symmetric : forall (A : Type) (X y : M A), equivalence x y —equivalence y Xx.
Proof.
compute.
intros.

elim (H k).
intros.

elim HO.
intros.

rewrite H1.
rewrite H2.
exists x0; auto.

Qed.

Lemma is_transitive : forall (A : Type) (xy z: M A), equivalence x y —equivalence y z —equivalence x z.
Proof.

compute.

intros.

elim (H k).
intros.

elim (HO k).
intros.

elim H1.

elim H2.

intros.

rewrite H4 in *.
rewrite H5 in .
rewrite H3 in H6.
rewrite H6.
exists x0; auto.

Qed.

Lemma left_neutral : forall (A B : Type) (f: A—MB) (a: A),
equivalence (bind (ret a) f) (f a).

Proof.

intros.

compute.

intro.

exists (f a k).

split.

45

apply eta_conversion.
reflexivity.

Qed.

Lemma right_neutral : forall (A B : Type) (m : M A),
equivalence (bind m (fun a: A =>reta)) m.

Proof.

compute.

intros.

exists (fun kO => m k (fun v => k0 v)).

split.

reflexivity.

symmetry.

assert (forall arg, (fun kO => m k (fun v => k0 v)) arg = m k arg).

intro.

assert ((fun v => arg v) = arg).

rewrite <— eta_conversion.

reflexivity.

rewrite H.

reflexivity.

apply functional_extensionality.

exact H.

Qed.

Lemma assoc : forall AB C: Type) (m: MA) (k: A—MB) (h: B —MCQC),
equivalence (bind m (fun x : A => bind (k x) h)) (bind (bind m k) h).

Proof.

compute.

intros.

exists (fun k1 =>m kO (fun v => k v kO (fun vO => h vO kO k1))).

auto.

Qed.

End SuperMonad.

46

	Introduction
	Generalities.
	The BSP model.
	The BSML language.
	Core BSP primitives.
	Useful BSP functions.

	Older implementation.
	Super-threads and evaluation strategy
	Thread implementationa

	Outline

	CPS transformation and flow analysis
	Continuation Passing Style.
	Monadic CPS transformation.
	Flow-directed cps transformation.
	Type-based flow analysis.
	Partial CPS transformation.
	Soundness for the partial transformation.

	New implementation
	Imperative features.
	The module system.
	Defunctorisation.
	The module environment.

	Polymorphic type inference.
	Type constraints.
	Constraint generation.
	Constraint solving.

	Monomorphisation.
	The instantiation graph.
	Code duplication.

	Monoflowisation.
	Partial CPS transformation.
	Implementation details and issues.

	Application to algorithmic skeletons
	Algorithmic skeletons approach
	Definition, advantages and problems
	Disadvantages and mixing skeletons with ad-hoc parallelism
	The P3L set of skeletons

	The OCamlP3L Skeletons
	The seq skeleton
	The farm skeleton
	The pipeline skeleton
	The loop skeleton
	The map skeleton
	The reduce skeleton
	The parfun and pardo skeletons
	Load balancing: the colors

	BSML Implementation.
	Execution of process networks
	From skeletons to BSML codes
	Implementation of seq(f).
	Implementation of farm(n,s).
	Implementation of pipeline(s1,s2).
	Implementation of loop(f,s).
	Implementation of map(n,s).

	Examples
	Code generation of a simple skeleton expression
	A PDE solver on multiple domains

	Conclusions
	Related works.
	Divide-and-conquer paradigms.
	CPS transformations.

	Conclusion.

	Longer BSML examples
	Sieve of Eratosthenes
	Logarithmic reduce method.
	Direct method.
	Recursive method.

	Parallel sorting

	Proof of lemmas and theorems
	Coq script of Chapter 2

